MOEBIUS[0] 1
[1] 0, 1
[2] 0, -1, 1
[3] 0, -1, 0, 1
[4] 0, 0, -1, 0, 1
[5] 0, -1, 0, 0, 0, 1

      OEIS Similars: A363914, A054525

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3639141 0 1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 0 1 0 1 -1 -1 0 0 1 0 -1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 0
StdRevT(n, n - k), 0 ≤ k ≤ nA0000121 1 0 1 -1 0 1 0 -1 0 1 0 -1 0 0 1 0 0 0 -1 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 1
StdInvT-1(n, k), 0 ≤ k ≤ nA1137041 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0
StdAccsee docsmissing1 0 1 0 -1 0 0 -1 -1 0 0 0 -1 -1 0 0 -1 -1 -1 -1 0 0 1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0
StdAccRevsee docsmissing1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 -1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1
StdDiffx1T(n, k) (k+1)missing1 0 2 0 -2 3 0 -2 0 4 0 0 -3 0 5 0 -2 0 0 0 6 0 2 -3 -4 0 0 7 0 -2 0 0 0 0 0 8 0 0 0 0 -5 0 0 0 9 0
StdRowSum k=0..n T(n, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdEvenSum k=0..n T(n, k) even(k)A1542721 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdAltSum k=0..n T(n, k) (-1)^kA1307791 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdAbsSum k=0..n | T(n, k) |A0344441 1 2 2 2 2 4 2 2 2 4 2 4 2 4 4 2 2 4 2 4 4 4 2 4 2 4 2 4 2 8 2 2 4 4 4 4 2 4 4 4 2 8 2 4 4 4 2
StdDiagSum k=0..n // 2 T(n - k, k)A0980181 0 1 -1 0 0 -1 1 -1 -1 1 1 -3 0 1 0 0 0 -2 0 -1 0 3 1 -5 0 1 0 0 0 -1 -1 -1 0 2 2 -3 0 0 0 -1 0 -2
StdAccSum k=0..n j=0..k T(n, j)A0000101 1 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28
StdAccRevSum k=0..n j=0..k T(n, n - j)A0000101 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
StdRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColMiddleT(n, n // 2)A1355281 0 -1 -1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
StdCentralET(2 n, n)A0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
StdCentralOT(2 n + 1, n)A2092290 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 -1 -2 -5 -4 -28 -6 -69 -83 -286 -10 -1352 -12 -3508 -3442 -12869 -16 -66367 -18 -189410 -117588
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 3 -2 -5 -4 0 -6 -69 -83 198 -10 -1352 -12 3328 -3442 -12869 -16 29241 -18 -189410 -117588
StdTransNat0 k=0..n T(n, k) kA0000100 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
StdTransNat1 k=0..n T(n, k) (k + 1)A0000101 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
StdTransSqrs k=0..n T(n, k) k^2A0074340 1 3 8 12 24 24 48 48 72 72 120 96 168 144 192 192 288 216 360 288 384 360 528 384 600 504 648 576
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA3677741 1 -1 -3 -3 -15 9 -63 -15 -63 225 -1023 705 -4095 3969 11265 -255 -65535 28161 -262143 195585
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3677731 1 3 -3 -3 -15 -39 -63 -15 -63 -735 -1023 705 -4095 -12159 11265 -255 -65535 -36351 -262143 195585
StdDiagRow1T(n + 1, n)A0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow2T(n + 2, n)A0399660 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow3T(n + 3, n)A0000070 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagCol1T(n + 1, 1)A0089661 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1 1 0 -1 0 -1 0 1 1 -1 0 0 1 0 0 -1 -1 -1 0 1 1 1 0 -1 1 1 0 -1 -1
StdDiagCol2T(n + 2, 2)A0000121 0 -1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 -1 0 1 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 1 0 -1
StdDiagCol3T(n + 3, 3)A3658071 0 0 -1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 0
StdPolysee docsA3639161 0 1 0 1 1 0 0 2 1 0 0 2 3 1 0 0 6 6 4 1 0 0 12 24 12 5 1 0 0 30 72 60 20 6 1 0 0 54 240 240 120
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
StdPolyRow3 k=0..3 T(3, k) n^kA0075310 0 6 24 60 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626
StdPolyCol2 k=0..n T(n, k) 2^kA0273751 2 2 6 12 30 54 126 240 504 990 2046 4020 8190 16254 32730 65280 131070 261576 524286 1047540
StdPolyCol3 k=0..n T(n, k) 3^kA0547181 3 6 24 72 240 696 2184 6480 19656 58800 177144 530640 1594320 4780776 14348640 43040160 129140160
StdPolyDiag k=0..n T(n, k) n^kA2527641 1 2 24 240 3120 46410 823536 16773120 387419760 9999899910 285311670600 8916097441680
AltTriangleT(n, k), 0 ≤ k ≤ nA3639141 0 -1 0 1 1 0 1 0 -1 0 0 -1 0 1 0 1 0 0 0 -1 0 -1 -1 1 0 0 1 0 1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 1 0
AltRevT(n, n - k), 0 ≤ k ≤ nA0000121 -1 0 1 1 0 -1 0 1 0 1 0 -1 0 0 -1 0 0 0 1 0 1 0 0 1 -1 -1 0 -1 0 0 0 0 0 1 0 1 0 0 0 -1 0 0 0 0
AltInvT-1(n, k), 0 ≤ k ≤ nA1137041 0 1 0 -1 1 0 -1 0 1 0 -1 1 0 1 0 -1 0 0 0 1 0 1 1 -1 0 0 1 0 -1 0 0 0 0 0 1 0 -1 1 0 1 0 0 0 1 0
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -1 0 1 0 -1 0 1 0 1 -1 0 1 0 0 0 -1 0 1 0 0 -1 1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 1 0 1 -1 0 1
AltAccsee docsmissing1 0 -1 0 1 2 0 1 1 0 0 0 -1 -1 0 0 1 1 1 1 0 0 -1 -2 -1 -1 -1 0 0 1 1 1 1 1 1 0 0 0 0 0 -1 -1 -1 -1
AltAntiDiagsee docsmissing1 0 0 -1 0 1 0 1 1 0 0 0 0 1 -1 -1 0 -1 0 0 0 1 -1 0 1 0 0 0 1 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1 -1 1
AltRowSum k=0..n T(n, k)A1307791 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltEvenSum k=0..n T(n, k) even(k)A1542721 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltAltSum k=0..n T(n, k) (-1)^kA0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltAbsSum k=0..n | T(n, k) |A0344441 1 2 2 2 2 4 2 2 2 4 2 4 2 4 4 2 2 4 2 4 4 4 2 4 2 4 2 4 2 8 2 2 4 4 4 4 2 4 4 4 2 8 2 4 4 4 2
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 1 2 0 -1 -1 1 1 -1 -1 1 0 1 0 -2 0 0 0 3 0 -1 -1 -1 0 -1 0 2 0 1 1 1 0 -2 -2 -1 0 0 0 -1 0 2
AltAccSum k=0..n j=0..k T(n, j)A3255961 -1 3 2 -2 4 -6 6 -4 6 -12 10 -4 12 -18 8 -8 16 -18 18 -8 12 -30 22 -8 20 -36 18 -12 28 -24 30 -16
AltAccRevSum k=0..n j=0..k T(n, n - j)A3255961 -2 5 -2 2 -4 6 -6 4 -6 12 -10 4 -12 18 -8 8 -16 18 -18 8 -12 30 -22 8 -20 36 -18 12 -28 24 -30 16
AltRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColMiddleT(n, n // 2)A1355281 0 1 1 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0
AltCentralET(2 n, n)A0000121 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
AltCentralOT(2 n + 1, n)A2092290 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 -1 3 2 -5 4 0 6 -69 83 198 10 -1352 12 3328 3442 -12869 16 29241 18 -189410 117588 705180 22
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 -1 2 -5 4 -28 6 -69 83 -286 10 -1352 12 -3508 3442 -12869 16 -66367 18 -189410 117588 -705640
AltTransNat1 k=0..n T(n, k) (k + 1)A3255961 -2 5 -2 2 -4 6 -6 4 -6 12 -10 4 -12 18 -8 8 -16 18 -18 8 -12 30 -22 8 -20 36 -18 12 -28 24 -30 16
AltTransSqrs k=0..n T(n, k) k^2A3385470 -1 5 -8 12 -24 40 -48 48 -72 120 -120 96 -168 240 -192 192 -288 360 -360 288 -384 600 -528 384
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3677731 -1 3 3 -3 15 -39 63 -15 63 -735 1023 705 4095 -12159 -11265 -255 65535 -36351 262143 195585
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3677741 -1 -1 3 -3 15 9 63 -15 63 225 1023 705 4095 3969 -11265 -255 65535 28161 262143 195585 -770049
AltDiagRow1T(n + 1, n)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow3T(n + 3, n)A0000070 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagCol1T(n + 1, 1)A008966-1 1 1 0 1 -1 1 0 0 -1 1 0 1 -1 -1 0 1 0 1 0 -1 -1 1 0 0 -1 0 0 1 1 1 0 -1 -1 -1 0 1 -1 -1 0 1 1 1
AltDiagCol2T(n + 2, 2)A0000121 0 -1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 -1 0 1 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 1 0 -1
AltDiagCol3T(n + 3, 3)A365807-1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1 0 0 -1 0 0 -1 0 0 0 0
AltPolysee docsmissing1 0 1 0 -1 1 0 2 -2 1 0 0 6 -3 1 0 0 -6 12 -4 1 0 0 12 -24 20 -5 1 0 0 -30 72 -60 30 -6 1 0 0 66
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
AltPolyRow3 k=0..3 T(3, k) n^kA0075310 0 -6 -24 -60 -120 -210 -336 -504 -720 -990 -1320 -1716 -2184 -2730 -3360 -4080 -4896 -5814 -6840
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 6 -6 12 -30 66 -126 240 -504 1050 -2046 4020 -8190 16506 -32730 65280 -131070 262584 -524286
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 12 -24 72 -240 744 -2184 6480 -19656 59280 -177144 530640 -1594320 4785144 -14348640 43040160
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 6 -24 240 -3120 46830 -823536 16773120 -387419760 10000099890 -285311670600 8916097441680
RevTriangleT(n, k), 0 ≤ k ≤ nA0000121 1 0 1 -1 0 1 0 -1 0 1 0 -1 0 0 1 0 0 0 -1 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 1
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1137041 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0
RevAccsee docsmissing1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 -1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1
RevAccRevsee docsmissing1 0 1 0 -1 0 0 -1 -1 0 0 0 -1 -1 0 0 -1 -1 -1 -1 0 0 1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0
RevAntiDiagsee docsmissing1 1 1 0 1 -1 1 0 0 1 0 -1 1 0 -1 0 1 0 0 0 1 0 0 0 0 1 0 0 -1 -1 1 0 0 0 -1 0 1 0 0 0 0 1 1 0 0 0
RevDiffx1T(n, k) (k+1)missing1 1 0 1 -2 0 1 0 -3 0 1 0 -3 0 0 1 0 0 0 -5 0 1 0 0 -4 -5 6 0 1 0 0 0 0 0 -7 0 1 0 0 0 -5 0 0 0 0 1
RevRowSum k=0..n T(n, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevEvenSum k=0..n T(n, k) even(k)A1159441 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevOddSum k=0..n T(n, k) odd(k)A0369870 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevAltSum k=0..n T(n, k) (-1)^kA1307791 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevAbsSum k=0..n | T(n, k) |A0344441 1 2 2 2 2 4 2 2 2 4 2 4 2 4 4 2 2 4 2 4 4 4 2 4 2 4 2 4 2 8 2 2 4 4 4 4 2 4 4 4 2 8 2 4 4 4 2
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 0 1 0 0 1 1 -1 0 2 0 0 1 -1 1 1 -1 2 0 -1 2 1 0 -1 0 0 1 2 -1 1 1 0 1 0 -1 0 2 -1 0 2 -1 2 2
RevAccSum k=0..n j=0..k T(n, j)A0000101 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
RevAccRevSum k=0..n j=0..k T(n, n - j)A0000101 1 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28
RevRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColMiddleT(n, n // 2)A0000351 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
RevCentralET(2 n, n)A0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
RevCentralOT(2 n + 1, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 -1 -2 -5 -4 -28 -6 -69 -83 -286 -10 -1352 -12 -3508 -3442 -12869 -16 -66367 -18 -189410 -117588
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 3 2 -5 4 0 6 -69 83 198 10 -1352 12 3328 3442 -12869 16 29241 18 -189410 117588 705180 22
RevTransNat0 k=0..n T(n, k) kA0000100 0 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28
RevTransNat1 k=0..n T(n, k) (k + 1)A0000101 1 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28
RevTransSqrs k=0..n T(n, k) k^2missing0 0 -1 -4 -4 -16 0 -36 -16 -36 -8 -100 0 -144 -24 -48 -64 -256 0 -324 -32 -120 -80 -484 0 -400 -120
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0273751 2 2 6 12 30 54 126 240 504 990 2046 4020 8190 16254 32730 65280 131070 261576 524286 1047540
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 6 -6 12 -30 66 -126 240 -504 1050 -2046 4020 -8190 16506 -32730 65280 -131070 262584 -524286
RevDiagRow1T(n + 1, n)A0089661 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1 1 0 -1 0 -1 0 1 1 -1 0 0 1 0 0 -1 -1 -1 0 1 1 1 0 -1 1 1 0 -1 -1
RevDiagRow2T(n + 2, n)A0000121 0 -1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 -1 0 1 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 1 0 -1
RevDiagRow3T(n + 3, n)A3658071 0 0 -1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 0
RevDiagCol1T(n + 1, 1)A0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol2T(n + 2, 2)A0399660 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol3T(n + 3, 3)A0000070 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevPolysee docsmissing1 1 1 1 1 1 1 0 1 1 1 0 -1 1 1 1 0 -3 -2 1 1 1 0 -3 -8 -3 1 1 1 0 -15 -8 -15 -4 1 1 1 0 9 -80 -15
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
RevPolyRow3 k=0..3 T(3, k) n^kA0055631 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483
RevPolyCol2 k=0..n T(n, k) 2^kA3677741 1 -1 -3 -3 -15 9 -63 -15 -63 225 -1023 705 -4095 3969 11265 -255 -65535 28161 -262143 195585
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 -2 -8 -8 -80 136 -728 -80 -728 12880 -59048 51760 -531440 1060696 4192480 -6560 -43046720
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 -1 -8 -15 -624 6265 -117648 -4095 -531440 899900001 -25937424600 61484396545 -23298085122480
InvTriangleT(n, k), 0 ≤ k ≤ nA1137041 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0
InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0000121 1 0 1 -1 0 1 0 -1 0 1 0 -1 0 0 1 0 0 0 -1 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 1
InvAccsee docsmissing1 0 1 0 1 2 0 1 1 2 0 1 2 2 3 0 1 1 1 1 2 0 1 2 3 3 3 4 0 1 1 1 1 1 1 2 0 1 2 2 3 3 3 3 4 0 1 1 2 2
InvAccRevsee docsmissing1 1 1 1 2 2 1 1 2 2 1 1 2 3 3 1 1 1 1 2 2 1 1 1 2 3 4 4 1 1 1 1 1 1 2 2 1 1 1 1 2 2 3 4 4 1 1 1 1 1
InvAntiDiagsee docsmissing1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0
InvDiffx1T(n, k) (k+1)missing1 0 2 0 2 3 0 2 0 4 0 2 3 0 5 0 2 0 0 0 6 0 2 3 4 0 0 7 0 2 0 0 0 0 0 8 0 2 3 0 5 0 0 0 9 0 2 0 4 0
InvRowSum k=0..n T(n, k)A0000051 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2
InvEvenSum k=0..n T(n, k) even(k)A1830631 0 1 0 2 0 2 0 3 0 2 0 4 0 2 0 4 0 3 0 4 0 2 0 6 0 2 0 4 0 4 0 5 0 2 0 6 0 2 0 6 0 4 0 4 0 2 0
InvOddSum k=0..n T(n, k) odd(k)A0012270 1 1 2 1 2 2 2 1 3 2 2 2 2 2 4 1 2 3 2 2 4 2 2 2 3 2 4 2 2 4 2 1 4 2 4 3 2 2 4 2 2 4 2 2 6 2 2
InvAltSum k=0..n T(n, k) (-1)^kA1123291 -1 0 -2 1 -2 0 -2 2 -3 0 -2 2 -2 0 -4 3 -2 0 -2 2 -4 0 -2 4 -3 0 -4 2 -2 0 -2 4 -4 0 -4 3 -2 0 -4
InvAbsSum k=0..n | T(n, k) |A0000051 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2
InvDiagSum k=0..n // 2 T(n - k, k)A0327411 0 1 1 2 1 3 1 3 2 3 1 5 1 3 3 4 1 5 1 5 3 3 1 7 2 3 3 5 1 7 1 5 3 3 3 8 1 3 3 7 1 7 1 5 5 3 1
InvAccSum k=0..n j=0..k T(n, j)A0813071 1 3 4 8 6 16 8 21 17 26 12 50 14 36 40 54 18 75 20 84 56 56 24 140 47 66 72 118 30 176 32 135 88
InvAccRevSum k=0..n j=0..k T(n, n - j)A0075031 2 5 6 10 8 16 10 19 16 22 14 34 16 28 28 36 20 45 22 48 36 40 26 68 34 46 44 62 32 80 34 69 52 58
InvRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvColMiddleT(n, n // 2)A1355281 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
InvCentralET(2 n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvCentralOT(2 n + 1, n)A2092290 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A0560451 1 3 4 11 6 42 8 107 94 308 12 1718 14 3538 3474 14827 18 68172 20 205316 117632 705686 24 3587174
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 -1 4 3 6 -10 8 91 94 -216 12 1254 14 -3354 3474 14795 18 -30736 20 174268 117632 -705222 24
InvTransNat0 k=0..n T(n, k) kA0002030 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 31 18 39 20 42 32 36 24 60 31 42 40 56 30 72 32 63 48 54
InvTransNat1 k=0..n T(n, k) (k + 1)A0075031 2 5 6 10 8 16 10 19 16 22 14 34 16 28 28 36 20 45 22 48 36 40 26 68 34 46 44 62 32 80 34 69 52 58
InvTransSqrs k=0..n T(n, k) k^2A0011570 1 5 10 21 26 50 50 85 91 130 122 210 170 250 260 341 290 455 362 546 500 610 530 850 651 850 820
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0748541 1 3 5 13 17 57 65 209 321 801 1025 3905 4097 12417 21505 53505 65537 233985 262145 885761 1327105
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 -1 5 -3 17 -23 65 -47 321 -287 1025 -1215 4097 -4223 21505 -12031 65537 -94719 262145 -228351
InvDiagRow1T(n + 1, n)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvDiagRow2T(n + 2, n)A0399660 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvDiagRow3T(n + 3, n)A0000070 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvDiagCol2T(n + 2, 2)A0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
InvDiagCol3T(n + 3, 3)A0799781 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
InvPolysee docsA3637331 0 1 0 1 1 0 2 2 1 0 2 6 3 1 0 3 10 12 4 1 0 2 22 30 20 5 1 0 4 34 93 68 30 6 1 0 2 78 246 276 130
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
InvPolyRow3 k=0..3 T(3, k) n^kA0342620 2 10 30 68 130 222 350 520 738 1010 1342 1740 2210 2758 3390 4112 4930 5850 6878 8020 9282 10670
InvPolyCol2 k=0..n T(n, k) 2^kA0558951 2 6 10 22 34 78 130 278 522 1062 2050 4190 8194 16518 32810 65814 131074 262734 524290 1049654
InvPolyCol3 k=0..n T(n, k) 3^kA3639131 3 12 30 93 246 768 2190 6654 19713 59304 177150 532290 1594326 4785168 14349180 43053375
InvPolyDiag k=0..n T(n, k) n^kA0661081 1 6 30 276 3130 46914 823550 16781384 387421227 10000100110 285311670622 8916103456860
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA1137041 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA3639141 0 1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 0 1 0 1 -1 -1 0 0 1 0 -1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 0
Inv:RevAccsee docsmissing1 1 1 1 2 2 1 1 2 2 1 1 2 3 3 1 1 1 1 2 2 1 1 1 2 3 4 4 1 1 1 1 1 1 2 2 1 1 1 1 2 2 3 4 4 1 1 1 1 1
Inv:RevAccRevsee docsmissing1 0 1 0 1 2 0 1 1 2 0 1 2 2 3 0 1 1 1 1 2 0 1 2 3 3 3 4 0 1 1 1 1 1 1 2 0 1 2 2 3 3 3 3 4 0 1 1 2 2
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 2 0 1 0 3 0 1 0 3 4 0 1 0 0 0 5 0 1 0 0 4 5 6 0 1 0 0 0 0 0 7 0 1 0 0 0 5 0 7 8 0 1 0 0 0 0
Inv:RevRowSum k=0..n T(n, k)A0000051 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2
Inv:RevEvenSum k=0..n T(n, k) even(k)A3201111 1 1 2 2 2 2 2 3 3 2 2 4 2 2 4 4 2 3 2 4 4 2 2 6 3 2 4 4 2 4 2 5 4 2 4 6 2 2 4 6 2 4 2 4 6 2 2
Inv:RevOddSum k=0..n T(n, k) odd(k)A0012270 0 1 0 1 0 2 0 1 0 2 0 2 0 2 0 1 0 3 0 2 0 2 0 2 0 2 0 2 0 4 0 1 0 2 0 3 0 2 0 2 0 4 0 2 0 2 0
Inv:RevAltSum k=0..n T(n, k) (-1)^kA1123291 1 0 2 1 2 0 2 2 3 0 2 2 2 0 4 3 2 0 2 2 4 0 2 4 3 0 4 2 2 0 2 4 4 0 4 3 2 0 4 4 2 0 2 2 6 0 2
Inv:RevAbsSum k=0..n | T(n, k) |A0000051 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2
Inv:RevDiagSum k=0..n // 2 T(n - k, k)A0012271 1 1 2 1 2 2 2 1 3 2 2 2 2 2 4 1 2 3 2 2 4 2 2 2 3 2 4 2 2 4 2 1 4 2 4 3 2 2 4 2 2 4 2 2 6 2 2
Inv:RevAccSum k=0..n j=0..k T(n, j)A0075031 2 5 6 10 8 16 10 19 16 22 14 34 16 28 28 36 20 45 22 48 36 40 26 68 34 46 44 62 32 80 34 69 52 58
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A0813071 1 3 4 8 6 16 8 21 17 26 12 50 14 36 40 54 18 75 20 84 56 56 24 140 47 66 72 118 30 176 32 135 88
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColMiddleT(n, n // 2)A0000351 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Inv:RevCentralET(2 n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevCentralOT(2 n + 1, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)A0560451 1 3 4 11 6 42 8 107 94 308 12 1718 14 3538 3474 14827 18 68172 20 205316 117632 705686 24 3587174
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 -1 -4 3 -6 -10 -8 91 -94 -216 -12 1254 -14 -3354 -3474 14795 -18 -30736 -20 174268 -117632
Inv:RevTransNat0 k=0..n T(n, k) kA0944710 0 1 2 5 4 12 6 17 14 22 10 44 12 32 36 49 16 69 18 78 52 52 22 132 44 62 68 112 28 168 30 129 84
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A0813071 1 3 4 8 6 16 8 21 17 26 12 50 14 36 40 54 18 75 20 84 56 56 24 140 47 66 72 118 30 176 32 135 88
Inv:RevTransSqrs k=0..n T(n, k) k^2A3673260 0 1 4 13 16 50 36 101 100 170 100 402 144 362 440 629 256 995 324 1266 920 962 484 2578 976 1370
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0558951 2 6 10 22 34 78 130 278 522 1062 2050 4190 8194 16518 32810 65814 131074 262734 524290 1049654
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 2 -10 18 -34 58 -130 274 -522 994 -2050 4170 -8194 16258 -32810 65810 -131074 261690 -524290
Inv:RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevDiagRow2T(n + 2, n)A0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Inv:RevDiagRow3T(n + 3, n)A0799781 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Inv:RevDiagCol1T(n + 1, 1)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevDiagCol2T(n + 2, 2)A0399660 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevDiagCol3T(n + 3, 3)A0000070 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 2 3 1 1 1 3 5 4 1 1 1 2 13 10 5 1 1 1 4 17 37 17 6 1 1 1 2 57 82 81 26 7 1 1
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0748541 1 3 5 13 17 57 65 209 321 801 1025 3905 4097 12417 21505 53505 65537 233985 262145 885761 1327105
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA3570511 1 4 10 37 82 352 730 2998 7291 26488 59050 263170 531442 2127952 5373460 19669879 43046722
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 1 3 10 81 626 9289 117650 2363393 43578163 1100100001 25937424602 810518482945 23298085122482
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.