OEIS Similars: A363914, A054525
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A363914 | 1 0 1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 0 1 0 1 -1 -1 0 0 1 0 -1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 0 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 0 1 -1 0 1 0 -1 0 1 0 -1 0 0 1 0 0 0 -1 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 1 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | A113704 | 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 |
Std | Accsee docs | missing | 1 0 1 0 -1 0 0 -1 -1 0 0 0 -1 -1 0 0 -1 -1 -1 -1 0 0 1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 |
Std | AccRevsee docs | missing | 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 -1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 -2 3 0 -2 0 4 0 0 -3 0 5 0 -2 0 0 0 6 0 2 -3 -4 0 0 7 0 -2 0 0 0 0 0 8 0 0 0 0 -5 0 0 0 9 0 |
Std | RowSum∑ k=0..n T(n, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A154272 | 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A130779 | 1 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A034444 | 1 1 2 2 2 2 4 2 2 2 4 2 4 2 4 4 2 2 4 2 4 4 4 2 4 2 4 2 4 2 8 2 2 4 4 4 4 2 4 4 4 2 8 2 4 4 4 2 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A098018 | 1 0 1 -1 0 0 -1 1 -1 -1 1 1 -3 0 1 0 0 0 -2 0 -1 0 3 1 -5 0 1 0 0 0 -1 -1 -1 0 2 2 -3 0 0 0 -1 0 -2 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000010 | 1 1 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000010 | 1 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColMiddleT(n, n // 2) | A135528 | 1 0 -1 -1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Std | CentralET(2 n, n) | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Std | CentralOT(2 n + 1, n) | A209229 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -1 -2 -5 -4 -28 -6 -69 -83 -286 -10 -1352 -12 -3508 -3442 -12869 -16 -66367 -18 -189410 -117588 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 3 -2 -5 -4 0 -6 -69 -83 198 -10 -1352 -12 3328 -3442 -12869 -16 29241 -18 -189410 -117588 |
Std | TransNat0∑ k=0..n T(n, k) k | A000010 | 0 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A000010 | 1 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A007434 | 0 1 3 8 12 24 24 48 48 72 72 120 96 168 144 192 192 288 216 360 288 384 360 528 384 600 504 648 576 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A367774 | 1 1 -1 -3 -3 -15 9 -63 -15 -63 225 -1023 705 -4095 3969 11265 -255 -65535 28161 -262143 195585 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A367773 | 1 1 3 -3 -3 -15 -39 -63 -15 -63 -735 -1023 705 -4095 -12159 11265 -255 -65535 -36351 -262143 195585 |
Std | DiagRow1T(n + 1, n) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow2T(n + 2, n) | A039966 | 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow3T(n + 3, n) | A000007 | 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagCol1T(n + 1, 1) | A008966 | 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1 1 0 -1 0 -1 0 1 1 -1 0 0 1 0 0 -1 -1 -1 0 1 1 1 0 -1 1 1 0 -1 -1 |
Std | DiagCol2T(n + 2, 2) | A000012 | 1 0 -1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 -1 0 1 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 1 0 -1 |
Std | DiagCol3T(n + 3, 3) | A365807 | 1 0 0 -1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 0 |
Std | Polysee docs | A363916 | 1 0 1 0 1 1 0 0 2 1 0 0 2 3 1 0 0 6 6 4 1 0 0 12 24 12 5 1 0 0 30 72 60 20 6 1 0 0 54 240 240 120 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A007531 | 0 0 6 24 60 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A027375 | 1 2 2 6 12 30 54 126 240 504 990 2046 4020 8190 16254 32730 65280 131070 261576 524286 1047540 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A054718 | 1 3 6 24 72 240 696 2184 6480 19656 58800 177144 530640 1594320 4780776 14348640 43040160 129140160 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A252764 | 1 1 2 24 240 3120 46410 823536 16773120 387419760 9999899910 285311670600 8916097441680 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A363914 | 1 0 -1 0 1 1 0 1 0 -1 0 0 -1 0 1 0 1 0 0 0 -1 0 -1 -1 1 0 0 1 0 1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 1 0 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A000012 | 1 -1 0 1 1 0 -1 0 1 0 1 0 -1 0 0 -1 0 0 0 1 0 1 0 0 1 -1 -1 0 -1 0 0 0 0 0 1 0 1 0 0 0 -1 0 0 0 0 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | A113704 | 1 0 1 0 -1 1 0 -1 0 1 0 -1 1 0 1 0 -1 0 0 0 1 0 1 1 -1 0 0 1 0 -1 0 0 0 0 0 1 0 -1 1 0 1 0 0 0 1 0 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 0 -1 0 1 0 1 -1 0 1 0 0 0 -1 0 1 0 0 -1 1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 1 0 1 -1 0 1 |
Alt | Accsee docs | missing | 1 0 -1 0 1 2 0 1 1 0 0 0 -1 -1 0 0 1 1 1 1 0 0 -1 -2 -1 -1 -1 0 0 1 1 1 1 1 1 0 0 0 0 0 -1 -1 -1 -1 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 1 0 1 1 0 0 0 0 1 -1 -1 0 -1 0 0 0 1 -1 0 1 0 0 0 1 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1 -1 1 |
Alt | RowSum∑ k=0..n T(n, k) | A130779 | 1 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A154272 | 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A034444 | 1 1 2 2 2 2 4 2 2 2 4 2 4 2 4 4 2 2 4 2 4 4 4 2 4 2 4 2 4 2 8 2 2 4 4 4 4 2 4 4 4 2 8 2 4 4 4 2 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 1 2 0 -1 -1 1 1 -1 -1 1 0 1 0 -2 0 0 0 3 0 -1 -1 -1 0 -1 0 2 0 1 1 1 0 -2 -2 -1 0 0 0 -1 0 2 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A325596 | 1 -1 3 2 -2 4 -6 6 -4 6 -12 10 -4 12 -18 8 -8 16 -18 18 -8 12 -30 22 -8 20 -36 18 -12 28 -24 30 -16 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A325596 | 1 -2 5 -2 2 -4 6 -6 4 -6 12 -10 4 -12 18 -8 8 -16 18 -18 8 -12 30 -22 8 -20 36 -18 12 -28 24 -30 16 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | ColMiddleT(n, n // 2) | A135528 | 1 0 1 1 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 |
Alt | CentralET(2 n, n) | A000012 | 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 |
Alt | CentralOT(2 n + 1, n) | A209229 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 3 2 -5 4 0 6 -69 83 198 10 -1352 12 3328 3442 -12869 16 29241 18 -189410 117588 705180 22 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 2 -5 4 -28 6 -69 83 -286 10 -1352 12 -3508 3442 -12869 16 -66367 18 -189410 117588 -705640 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A325596 | 1 -2 5 -2 2 -4 6 -6 4 -6 12 -10 4 -12 18 -8 8 -16 18 -18 8 -12 30 -22 8 -20 36 -18 12 -28 24 -30 16 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A338547 | 0 -1 5 -8 12 -24 40 -48 48 -72 120 -120 96 -168 240 -192 192 -288 360 -360 288 -384 600 -528 384 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A367773 | 1 -1 3 3 -3 15 -39 63 -15 63 -735 1023 705 4095 -12159 -11265 -255 65535 -36351 262143 195585 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A367774 | 1 -1 -1 3 -3 15 9 63 -15 63 225 1023 705 4095 3969 -11265 -255 65535 28161 262143 195585 -770049 |
Alt | DiagRow1T(n + 1, n) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagRow3T(n + 3, n) | A000007 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagCol1T(n + 1, 1) | A008966 | -1 1 1 0 1 -1 1 0 0 -1 1 0 1 -1 -1 0 1 0 1 0 -1 -1 1 0 0 -1 0 0 1 1 1 0 -1 -1 -1 0 1 -1 -1 0 1 1 1 |
Alt | DiagCol2T(n + 2, 2) | A000012 | 1 0 -1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 -1 0 1 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 1 0 -1 |
Alt | DiagCol3T(n + 3, 3) | A365807 | -1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1 0 0 -1 0 0 -1 0 0 0 0 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 2 -2 1 0 0 6 -3 1 0 0 -6 12 -4 1 0 0 12 -24 20 -5 1 0 0 -30 72 -60 30 -6 1 0 0 66 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A007531 | 0 0 -6 -24 -60 -120 -210 -336 -504 -720 -990 -1320 -1716 -2184 -2730 -3360 -4080 -4896 -5814 -6840 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 6 -6 12 -30 66 -126 240 -504 1050 -2046 4020 -8190 16506 -32730 65280 -131070 262584 -524286 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 12 -24 72 -240 744 -2184 6480 -19656 59280 -177144 530640 -1594320 4785144 -14348640 43040160 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 6 -24 240 -3120 46830 -823536 16773120 -387419760 10000099890 -285311670600 8916097441680 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A000012 | 1 1 0 1 -1 0 1 0 -1 0 1 0 -1 0 0 1 0 0 0 -1 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 1 |
Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A113704 | 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 |
Rev | Accsee docs | missing | 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 -1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 |
Rev | AccRevsee docs | missing | 1 0 1 0 -1 0 0 -1 -1 0 0 0 -1 -1 0 0 -1 -1 -1 -1 0 0 1 0 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 1 -1 1 0 0 1 0 -1 1 0 -1 0 1 0 0 0 1 0 0 0 0 1 0 0 -1 -1 1 0 0 0 -1 0 1 0 0 0 0 1 1 0 0 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 -2 0 1 0 -3 0 1 0 -3 0 0 1 0 0 0 -5 0 1 0 0 -4 -5 6 0 1 0 0 0 0 0 -7 0 1 0 0 0 -5 0 0 0 0 1 |
Rev | RowSum∑ k=0..n T(n, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A115944 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A036987 | 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A130779 | 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A034444 | 1 1 2 2 2 2 4 2 2 2 4 2 4 2 4 4 2 2 4 2 4 4 4 2 4 2 4 2 4 2 8 2 2 4 4 4 4 2 4 4 4 2 8 2 4 4 4 2 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 0 1 0 0 1 1 -1 0 2 0 0 1 -1 1 1 -1 2 0 -1 2 1 0 -1 0 0 1 2 -1 1 1 0 1 0 -1 0 2 -1 0 2 -1 2 2 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000010 | 1 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000010 | 1 1 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColMiddleT(n, n // 2) | A000035 | 1 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Rev | CentralET(2 n, n) | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Rev | CentralOT(2 n + 1, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -1 -2 -5 -4 -28 -6 -69 -83 -286 -10 -1352 -12 -3508 -3442 -12869 -16 -66367 -18 -189410 -117588 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 2 -5 4 0 6 -69 83 198 10 -1352 12 3328 3442 -12869 16 29241 18 -189410 117588 705180 22 |
Rev | TransNat0∑ k=0..n T(n, k) k | A000010 | 0 0 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A000010 | 1 1 -1 -2 -2 -4 -2 -6 -4 -6 -4 -10 -4 -12 -6 -8 -8 -16 -6 -18 -8 -12 -10 -22 -8 -20 -12 -18 -12 -28 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 -1 -4 -4 -16 0 -36 -16 -36 -8 -100 0 -144 -24 -48 -64 -256 0 -324 -32 -120 -80 -484 0 -400 -120 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A027375 | 1 2 2 6 12 30 54 126 240 504 990 2046 4020 8190 16254 32730 65280 131070 261576 524286 1047540 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 6 -6 12 -30 66 -126 240 -504 1050 -2046 4020 -8190 16506 -32730 65280 -131070 262584 -524286 |
Rev | DiagRow1T(n + 1, n) | A008966 | 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1 1 0 -1 0 -1 0 1 1 -1 0 0 1 0 0 -1 -1 -1 0 1 1 1 0 -1 1 1 0 -1 -1 |
Rev | DiagRow2T(n + 2, n) | A000012 | 1 0 -1 0 -1 0 0 0 -1 0 1 0 -1 0 0 0 0 0 1 0 -1 0 0 0 -1 0 1 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 1 0 -1 |
Rev | DiagRow3T(n + 3, n) | A365807 | 1 0 0 -1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 0 |
Rev | DiagCol1T(n + 1, 1) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | DiagCol2T(n + 2, 2) | A039966 | 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | DiagCol3T(n + 3, 3) | A000007 | 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 1 0 1 1 1 0 -1 1 1 1 0 -3 -2 1 1 1 0 -3 -8 -3 1 1 1 0 -15 -8 -15 -4 1 1 1 0 9 -80 -15 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A005563 | 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A367774 | 1 1 -1 -3 -3 -15 9 -63 -15 -63 225 -1023 705 -4095 3969 11265 -255 -65535 28161 -262143 195585 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 -2 -8 -8 -80 136 -728 -80 -728 12880 -59048 51760 -531440 1060696 4192480 -6560 -43046720 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 -1 -8 -15 -624 6265 -117648 -4095 -531440 899900001 -25937424600 61484396545 -23298085122480 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | A113704 | 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 0 1 -1 0 1 0 -1 0 1 0 -1 0 0 1 0 0 0 -1 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0 0 0 1 |
Inv | Accsee docs | missing | 1 0 1 0 1 2 0 1 1 2 0 1 2 2 3 0 1 1 1 1 2 0 1 2 3 3 3 4 0 1 1 1 1 1 1 2 0 1 2 2 3 3 3 3 4 0 1 1 2 2 |
Inv | AccRevsee docs | missing | 1 1 1 1 2 2 1 1 2 2 1 1 2 3 3 1 1 1 1 2 2 1 1 1 2 3 4 4 1 1 1 1 1 1 2 2 1 1 1 1 2 2 3 4 4 1 1 1 1 1 |
Inv | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 3 0 2 0 4 0 2 3 0 5 0 2 0 0 0 6 0 2 3 4 0 0 7 0 2 0 0 0 0 0 8 0 2 3 0 5 0 0 0 9 0 2 0 4 0 |
Inv | RowSum∑ k=0..n T(n, k) | A000005 | 1 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 |
Inv | EvenSum∑ k=0..n T(n, k) even(k) | A183063 | 1 0 1 0 2 0 2 0 3 0 2 0 4 0 2 0 4 0 3 0 4 0 2 0 6 0 2 0 4 0 4 0 5 0 2 0 6 0 2 0 6 0 4 0 4 0 2 0 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | A001227 | 0 1 1 2 1 2 2 2 1 3 2 2 2 2 2 4 1 2 3 2 2 4 2 2 2 3 2 4 2 2 4 2 1 4 2 4 3 2 2 4 2 2 4 2 2 6 2 2 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | A112329 | 1 -1 0 -2 1 -2 0 -2 2 -3 0 -2 2 -2 0 -4 3 -2 0 -2 2 -4 0 -2 4 -3 0 -4 2 -2 0 -2 4 -4 0 -4 3 -2 0 -4 |
Inv | AbsSum∑ k=0..n | T(n, k) | | A000005 | 1 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 |
Inv | DiagSum∑ k=0..n // 2 T(n - k, k) | A032741 | 1 0 1 1 2 1 3 1 3 2 3 1 5 1 3 3 4 1 5 1 5 3 3 1 7 2 3 3 5 1 7 1 5 3 3 3 8 1 3 3 7 1 7 1 5 5 3 1 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A081307 | 1 1 3 4 8 6 16 8 21 17 26 12 50 14 36 40 54 18 75 20 84 56 56 24 140 47 66 72 118 30 176 32 135 88 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A007503 | 1 2 5 6 10 8 16 10 19 16 22 14 34 16 28 28 36 20 45 22 48 36 40 26 68 34 46 44 62 32 80 34 69 52 58 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | ColMiddleT(n, n // 2) | A135528 | 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Inv | CentralET(2 n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | CentralOT(2 n + 1, n) | A209229 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | A056045 | 1 1 3 4 11 6 42 8 107 94 308 12 1718 14 3538 3474 14827 18 68172 20 205316 117632 705686 24 3587174 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -1 4 3 6 -10 8 91 94 -216 12 1254 14 -3354 3474 14795 18 -30736 20 174268 117632 -705222 24 |
Inv | TransNat0∑ k=0..n T(n, k) k | A000203 | 0 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 31 18 39 20 42 32 36 24 60 31 42 40 56 30 72 32 63 48 54 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | A007503 | 1 2 5 6 10 8 16 10 19 16 22 14 34 16 28 28 36 20 45 22 48 36 40 26 68 34 46 44 62 32 80 34 69 52 58 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | A001157 | 0 1 5 10 21 26 50 50 85 91 130 122 210 170 250 260 341 290 455 362 546 500 610 530 850 651 850 820 |
Inv | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A074854 | 1 1 3 5 13 17 57 65 209 321 801 1025 3905 4097 12417 21505 53505 65537 233985 262145 885761 1327105 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 -1 5 -3 17 -23 65 -47 321 -287 1025 -1215 4097 -4223 21505 -12031 65537 -94719 262145 -228351 |
Inv | DiagRow1T(n + 1, n) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | DiagRow2T(n + 2, n) | A039966 | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | DiagRow3T(n + 3, n) | A000007 | 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | DiagCol2T(n + 2, 2) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Inv | DiagCol3T(n + 3, 3) | A079978 | 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 |
Inv | Polysee docs | A363733 | 1 0 1 0 1 1 0 2 2 1 0 2 6 3 1 0 3 10 12 4 1 0 2 22 30 20 5 1 0 4 34 93 68 30 6 1 0 2 78 246 276 130 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A034262 | 0 2 10 30 68 130 222 350 520 738 1010 1342 1740 2210 2758 3390 4112 4930 5850 6878 8020 9282 10670 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | A055895 | 1 2 6 10 22 34 78 130 278 522 1062 2050 4190 8194 16518 32810 65814 131074 262734 524290 1049654 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | A363913 | 1 3 12 30 93 246 768 2190 6654 19713 59304 177150 532290 1594326 4785168 14349180 43053375 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | A066108 | 1 1 6 30 276 3130 46914 823550 16781384 387421227 10000100110 285311670622 8916103456860 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | A113704 | 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A363914 | 1 0 1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 0 0 1 0 1 -1 -1 0 0 1 0 -1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 0 |
Inv:Rev | Accsee docs | missing | 1 1 1 1 2 2 1 1 2 2 1 1 2 3 3 1 1 1 1 2 2 1 1 1 2 3 4 4 1 1 1 1 1 1 2 2 1 1 1 1 2 2 3 4 4 1 1 1 1 1 |
Inv:Rev | AccRevsee docs | missing | 1 0 1 0 1 2 0 1 1 2 0 1 2 2 3 0 1 1 1 1 2 0 1 2 3 3 3 4 0 1 1 1 1 1 1 2 0 1 2 2 3 3 3 3 4 0 1 1 2 2 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 |
Inv:Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 0 1 0 3 0 1 0 3 4 0 1 0 0 0 5 0 1 0 0 4 5 6 0 1 0 0 0 0 0 7 0 1 0 0 0 5 0 7 8 0 1 0 0 0 0 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A000005 | 1 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | A320111 | 1 1 1 2 2 2 2 2 3 3 2 2 4 2 2 4 4 2 3 2 4 4 2 2 6 3 2 4 4 2 4 2 5 4 2 4 6 2 2 4 6 2 4 2 4 6 2 2 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | A001227 | 0 0 1 0 1 0 2 0 1 0 2 0 2 0 2 0 1 0 3 0 2 0 2 0 2 0 2 0 2 0 4 0 1 0 2 0 3 0 2 0 2 0 4 0 2 0 2 0 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A112329 | 1 1 0 2 1 2 0 2 2 3 0 2 2 2 0 4 3 2 0 2 2 4 0 2 4 3 0 4 2 2 0 2 4 4 0 4 3 2 0 4 4 2 0 2 2 6 0 2 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | A000005 | 1 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A001227 | 1 1 1 2 1 2 2 2 1 3 2 2 2 2 2 4 1 2 3 2 2 4 2 2 2 3 2 4 2 2 4 2 1 4 2 4 3 2 2 4 2 2 4 2 2 6 2 2 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A007503 | 1 2 5 6 10 8 16 10 19 16 22 14 34 16 28 28 36 20 45 22 48 36 40 26 68 34 46 44 62 32 80 34 69 52 58 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A081307 | 1 1 3 4 8 6 16 8 21 17 26 12 50 14 36 40 54 18 75 20 84 56 56 24 140 47 66 72 118 30 176 32 135 88 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColMiddleT(n, n // 2) | A000035 | 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Inv:Rev | CentralET(2 n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | CentralOT(2 n + 1, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A056045 | 1 1 3 4 11 6 42 8 107 94 308 12 1718 14 3538 3474 14827 18 68172 20 205316 117632 705686 24 3587174 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 -4 3 -6 -10 -8 91 -94 -216 -12 1254 -14 -3354 -3474 14795 -18 -30736 -20 174268 -117632 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | A094471 | 0 0 1 2 5 4 12 6 17 14 22 10 44 12 32 36 49 16 69 18 78 52 52 22 132 44 62 68 112 28 168 30 129 84 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A081307 | 1 1 3 4 8 6 16 8 21 17 26 12 50 14 36 40 54 18 75 20 84 56 56 24 140 47 66 72 118 30 176 32 135 88 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | A367326 | 0 0 1 4 13 16 50 36 101 100 170 100 402 144 362 440 629 256 995 324 1266 920 962 484 2578 976 1370 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A055895 | 1 2 6 10 22 34 78 130 278 522 1062 2050 4190 8194 16518 32810 65814 131074 262734 524290 1049654 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 2 -10 18 -34 58 -130 274 -522 994 -2050 4170 -8194 16258 -32810 65810 -131074 261690 -524290 |
Inv:Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | DiagRow2T(n + 2, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Inv:Rev | DiagRow3T(n + 3, n) | A079978 | 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 |
Inv:Rev | DiagCol1T(n + 1, 1) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | DiagCol2T(n + 2, 2) | A039966 | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | DiagCol3T(n + 3, 3) | A000007 | 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 1 1 1 2 1 1 1 2 3 1 1 1 3 5 4 1 1 1 2 13 10 5 1 1 1 4 17 37 17 6 1 1 1 2 57 82 81 26 7 1 1 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A002522 | 1 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Inv:Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A074854 | 1 1 3 5 13 17 57 65 209 321 801 1025 3905 4097 12417 21505 53505 65537 233985 262145 885761 1327105 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A357051 | 1 1 4 10 37 82 352 730 2998 7291 26488 59050 263170 531442 2127952 5373460 19669879 43046722 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 3 10 81 626 9289 117650 2363393 43578163 1100100001 25937424602 810518482945 23298085122482 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.