LAH[0] 1
[1] 0, 1
[2] 0, 2, 1
[3] 0, 6, 6, 1
[4] 0, 24, 36, 12, 1
[5] 0, 120, 240, 120, 20, 1

      OEIS Similars: A271703, A008297, A066667, A089231, A105278, A111596

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA2717031 0 1 0 2 1 0 6 6 1 0 24 36 12 1 0 120 240 120 20 1 0 720 1800 1200 300 30 1 0 5040 15120 12600
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 6 6 0 1 12 36 24 0 1 20 120 240 120 0 1 30 300 1200 1800 720 0 1 42 630 4200 12600
StdInvT-1(n, k), 0 ≤ k ≤ nA2717031 0 1 0 -2 1 0 6 -6 1 0 -24 36 -12 1 0 120 -240 120 -20 1 0 -720 1800 -1200 300 -30 1 0 5040 -15120
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -2 0 1 -6 6 0 1 -12 36 -24 0 1 -20 120 -240 120 0 1 -30 300 -1200 1800 -720 0 1 -42 630
StdAccsee docsA3497761 0 1 0 2 3 0 6 12 13 0 24 60 72 73 0 120 360 480 500 501 0 720 2520 3720 4020 4050 4051 0 5040
StdAccRevsee docsmissing1 1 1 1 3 3 1 7 13 13 1 13 49 73 73 1 21 141 381 501 501 1 31 331 1531 3331 4051 4051 1 43 673 4873
StdAntiDiagsee docsA1800471 0 0 1 0 2 0 6 1 0 24 6 0 120 36 1 0 720 240 12 0 5040 1800 120 1 0 40320 15120 1200 20 0 362880
StdDiffx1T(n, k) (k+1)A3602051 0 2 0 4 3 0 12 18 4 0 48 108 48 5 0 240 720 480 100 6 0 1440 5400 4800 1500 180 7 0 10080 45360
StdRowSum k=0..n T(n, k)A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
StdEvenSum k=0..n T(n, k) even(k)A0883121 0 1 6 37 260 2101 19362 201097 2326536 29668681 413257790 6238931821 101415565836 1765092183037
StdOddSum k=0..n T(n, k) odd(k)A0883130 1 2 7 36 241 1950 18271 193256 2270017 29272410 410815351 6231230412 101560835377 1769925341366
StdAltSum k=0..n T(n, k) (-1)^kA1118841 -1 -1 -1 1 19 151 1091 7841 56519 396271 2442439 7701409 -145269541 -4833158329 -104056218421
StdAbsSum k=0..n | T(n, k) |A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
StdDiagSum k=0..n // 2 T(n - k, k)A0010531 0 1 2 7 30 157 972 6961 56660 516901 5225670 57999271 701216922 9173819257 129134686520
StdAccSum k=0..n j=0..k T(n, j)A0621471 1 5 31 229 1961 19081 207775 2501801 32989969 472630861 7307593151 121247816845 2148321709561
StdAccRevSum k=0..n j=0..k T(n, n - j)A0027201 2 7 34 209 1546 13327 130922 1441729 17572114 234662231 3405357682 53334454417 896324308634
StdRowLcmLcm k=0..n | T(n, k) | > 1A3593651 1 2 6 72 240 3600 75600 1411200 10160640 457228800 4191264000 184415616000 2054916864000
StdRowGcdGcd k=0..n | T(n, k) | > 1A0023781 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
StdRowMaxMax k=0..n | T(n, k) |A0028681 1 2 6 36 240 1800 15120 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
StdColMiddleT(n, n // 2)A3435811 0 2 6 36 240 1200 12600 58800 846720 3810240 69854400 307359360 6849722880 29682132480
StdCentralET(2 n, n)A1875351 2 36 1200 58800 3810240 307359360 29682132480 3339239904000 428906814336000 61934143990118400
StdCentralOT(2 n + 1, n)A3677760 6 240 12600 846720 69854400 6849722880 779155977600 100919250432000 14668613050291200
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A3440511 1 5 37 361 4301 60001 954325 16984577 333572041 7151967181 165971975621 4139744524345
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3440501 1 -3 1 73 -699 3001 24697 -783999 10946233 -80958779 -656003919 40097528857 -944102982419
StdTransNat0 k=0..n T(n, k) kA0528520 1 4 21 136 1045 9276 93289 1047376 12975561 175721140 2581284541 40864292184 693347907421
StdTransNat1 k=0..n T(n, k) (k + 1)A0027201 2 7 34 209 1546 13327 130922 1441729 17572114 234662231 3405357682 53334454417 896324308634
StdTransSqrs k=0..n T(n, k) k^2A1031940 1 6 39 292 2505 24306 263431 3154824 41368977 589410910 9064804551 149641946796 2638693215769
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0251681 1 5 37 361 4361 62701 1044205 19748177 417787921 9770678101 250194150581 6959638411705
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3182231 1 -3 13 -71 441 -2699 9157 206193 -8443151 236126701 -6169406979 161388751657 -4327824442967
StdDiagRow1T(n + 1, n)A0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdDiagRow2T(n + 2, n)A0833740 6 36 120 300 630 1176 2016 3240 4950 7260 10296 14196 19110 25200 32640 41616 52326 64980 79800
StdDiagRow3T(n + 3, n)A2532850 24 240 1200 4200 11760 28224 60480 118800 217800 377520 624624 993720 1528800 2284800 3329280
StdDiagCol1T(n + 1, 1)A0001421 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000
StdDiagCol2T(n + 2, 2)A0012861 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800
StdDiagCol3T(n + 3, 3)A0017541 12 120 1200 12600 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
StdPolysee docsA2532861 0 1 0 1 1 0 3 2 1 0 13 8 3 1 0 73 44 15 4 1 0 501 304 99 24 5 1 0 4051 2512 801 184 35 6 1 0
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0055630 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 783
StdPolyRow3 k=0..3 T(3, k) n^kA2265140 13 44 99 184 305 468 679 944 1269 1660 2123 2664 3289 4004 4815 5728 6749 7884 9139 10520 12033
StdPolyCol2 k=0..n T(n, k) 2^kA0528971 2 8 44 304 2512 24064 261536 3173888 42483968 621159424 9841950208 167879268352 3065723549696
StdPolyCol3 k=0..n T(n, k) 3^kA2558061 3 15 99 801 7623 83079 1017495 13808097 205374123 3318673599 57845821707 1081091446785
StdPolyDiag k=0..n T(n, k) n^kA2931451 1 8 99 1696 37225 997056 31535371 1150303232 47538819729 2195314048000 112032721984051
AltTriangleT(n, k), 0 ≤ k ≤ nA2717031 0 -1 0 -2 1 0 -6 6 -1 0 -24 36 -12 1 0 -120 240 -120 20 -1 0 -720 1800 -1200 300 -30 1 0 -5040
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 1 -2 0 -1 6 -6 0 1 -12 36 -24 0 -1 20 -120 240 -120 0 1 -30 300 -1200 1800 -720 0 -1 42 -630
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 2 1 0 -6 -6 1 0 -120 -108 12 1 0 1320 1200 -120 -20 1 0 65520 59400 -6000 -900 30 1 0
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 -6 -6 0 1 12 -108 -120 0 1 -20 -120 1200 1320 0 1 30 -900 -6000 59400 65520 0 1 -42
AltAccsee docsmissing1 0 -1 0 -2 -1 0 -6 0 -1 0 -24 12 0 1 0 -120 120 0 20 19 0 -720 1080 -120 180 150 151 0 -5040 10080
AltAccRevsee docsmissing1 -1 -1 1 -1 -1 -1 5 -1 -1 1 -11 25 1 1 -1 19 -101 139 19 19 1 -29 271 -929 871 151 151 -1 41 -589
AltAntiDiagsee docsA1800471 0 0 -1 0 -2 0 -6 1 0 -24 6 0 -120 36 -1 0 -720 240 -12 0 -5040 1800 -120 1 0 -40320 15120 -1200
AltDiffx1T(n, k) (k+1)A3602051 0 -2 0 -4 3 0 -12 18 -4 0 -48 108 -48 5 0 -240 720 -480 100 -6 0 -1440 5400 -4800 1500 -180 7 0
AltRowSum k=0..n T(n, k)A1118841 -1 -1 -1 1 19 151 1091 7841 56519 396271 2442439 7701409 -145269541 -4833158329 -104056218421
AltEvenSum k=0..n T(n, k) even(k)A0883121 0 1 6 37 260 2101 19362 201097 2326536 29668681 413257790 6238931821 101415565836 1765092183037
AltOddSum k=0..n T(n, k) odd(k)A0883130 -1 -2 -7 -36 -241 -1950 -18271 -193256 -2270017 -29272410 -410815351 -6231230412 -101560835377
AltAltSum k=0..n T(n, k) (-1)^kA0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
AltAbsSum k=0..n | T(n, k) |A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
AltDiagSum k=0..n // 2 T(n - k, k)A0587981 0 -1 -2 -5 -18 -85 -492 -3359 -26380 -234061 -2314230 -25222469 -300355398 -3879397705
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -3 -7 -11 39 721 7433 68937 621071 5482981 46032249 330103357 1056150263 -31272214791
AltAccRevSum k=0..n j=0..k T(n, n - j)A2024101 -2 -1 2 17 94 487 2386 9473 638 -727729 -14280542 -222283631 -3235193378 -46058318473
AltRowLcmLcm k=0..n | T(n, k) | > 1A3593651 1 2 6 72 240 3600 75600 1411200 10160640 457228800 4191264000 184415616000 2054916864000
AltRowGcdGcd k=0..n | T(n, k) | > 1A0023781 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
AltRowMaxMax k=0..n | T(n, k) |A0028681 1 2 6 36 240 1800 15120 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
AltColMiddleT(n, n // 2)A3435811 0 -2 -6 36 240 -1200 -12600 58800 846720 -3810240 -69854400 307359360 6849722880 -29682132480
AltCentralET(2 n, n)A1875351 -2 36 -1200 58800 -3810240 307359360 -29682132480 3339239904000 -428906814336000
AltCentralOT(2 n + 1, n)A3677760 -6 240 -12600 846720 -69854400 6849722880 -779155977600 100919250432000 -14668613050291200
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)A3440501 -1 -3 -1 73 699 3001 -24697 -783999 -10946233 -80958779 656003919 40097528857 944102982419
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3440511 -1 5 -37 361 -4301 60001 -954325 16984577 -333572041 7151967181 -165971975621 4139744524345
AltTransNat0 k=0..n T(n, k) kA3173650 -1 0 3 16 75 336 1295 1632 -55881 -1124000 -16722981 -229985040 -3089923837 -41225160144
AltTransNat1 k=0..n T(n, k) (k + 1)A2024101 -2 -1 2 17 94 487 2386 9473 638 -727729 -14280542 -222283631 -3235193378 -46058318473
AltTransSqrs k=0..n T(n, k) k^2A2564670 -1 2 9 28 55 -234 -5047 -59464 -620433 -6210710 -60312791 -552386988 -4291343641 -14786103682
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3182231 -1 -3 -13 -71 -441 -2699 -9157 206193 8443151 236126701 6169406979 161388751657 4327824442967
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0251681 -1 5 -37 361 -4361 62701 -1044205 19748177 -417787921 9770678101 -250194150581 6959638411705
AltDiagRow1T(n + 1, n)A0023780 -2 6 -12 20 -30 42 -56 72 -90 110 -132 156 -182 210 -240 272 -306 342 -380 420 -462 506 -552 600
AltDiagRow2T(n + 2, n)A0833740 -6 36 -120 300 -630 1176 -2016 3240 -4950 7260 -10296 14196 -19110 25200 -32640 41616 -52326
AltDiagRow3T(n + 3, n)A2532850 -24 240 -1200 4200 -11760 28224 -60480 118800 -217800 377520 -624624 993720 -1528800 2284800
AltDiagCol1T(n + 1, 1)A000142-1 -2 -6 -24 -120 -720 -5040 -40320 -362880 -3628800 -39916800 -479001600 -6227020800 -87178291200
AltDiagCol2T(n + 2, 2)A0012861 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800
AltDiagCol3T(n + 3, 3)A001754-1 -12 -120 -1200 -12600 -141120 -1693440 -21772800 -299376000 -4390848000 -68497228800
AltPolysee docsmissing1 0 1 0 -1 1 0 -1 -2 1 0 -1 0 -3 1 0 1 4 3 -4 1 0 19 16 9 8 -5 1 0 151 48 9 8 15 -6 1 0 1091 64 -63
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
AltPolyRow3 k=0..3 T(3, k) n^kmissing0 -1 4 9 8 -5 -36 -91 -176 -297 -460 -671 -936 -1261 -1652 -2115 -2656 -3281 -3996 -4807 -5720
AltPolyCol2 k=0..n T(n, k) 2^kA3173641 -2 0 4 16 48 64 -800 -12288 -127232 -1150976 -9266688 -58726400 -68777984 7510646784 207794409472
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 3 9 9 -63 -621 -3699 -14607 17253 1310499 20725713 249633657 2506512681 18706941171
AltPolyDiag k=0..n T(n, k) n^kA3172791 -1 0 9 -32 -225 3456 -2695 -433152 4495743 47872000 -1768142871 6703534080 597265448351
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 6 6 0 1 12 36 24 0 1 20 120 240 120 0 1 30 300 1200 1800 720 0 1 42 630 4200 12600
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA2717031 0 1 0 -2 1 0 6 -6 1 0 -24 36 -12 1 0 120 -240 120 -20 1 0 -720 1800 -1200 300 -30 1 0 5040 -15120
RevAccsee docsmissing1 1 1 1 3 3 1 7 13 13 1 13 49 73 73 1 21 141 381 501 501 1 31 331 1531 3331 4051 4051 1 43 673 4873
RevAccRevsee docsA3497761 0 1 0 2 3 0 6 12 13 0 24 60 72 73 0 120 360 480 500 501 0 720 2520 3720 4020 4050 4051 0 5040
RevAntiDiagsee docsmissing1 1 1 0 1 2 1 6 0 1 12 6 1 20 36 0 1 30 120 24 1 42 300 240 0 1 56 630 1200 120 1 72 1176 4200 1800
RevDiffx1T(n, k) (k+1)missing1 1 0 1 4 0 1 12 18 0 1 24 108 96 0 1 40 360 960 600 0 1 60 900 4800 9000 4320 0 1 84 1890 16800
RevRowSum k=0..n T(n, k)A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
RevEvenSum k=0..n T(n, k) even(k)A0969651 1 1 7 37 241 2101 18271 201097 2270017 29668681 410815351 6238931821 101560835377 1765092183037
RevOddSum k=0..n T(n, k) odd(k)A0969390 0 2 6 36 260 1950 19362 193256 2326536 29272410 413257790 6231230412 101415565836 1769925341366
RevAltSum k=0..n T(n, k) (-1)^kA1118841 1 -1 1 1 -19 151 -1091 7841 -56519 396271 -2442439 7701409 145269541 -4833158329 104056218421
RevAbsSum k=0..n | T(n, k) |A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 3 7 19 57 175 583 2007 7249 27187 105495 423403 1749097 7435479 32435527 145036735 663785793
RevAccSum k=0..n j=0..k T(n, j)A0027201 2 7 34 209 1546 13327 130922 1441729 17572114 234662231 3405357682 53334454417 896324308634
RevAccRevSum k=0..n j=0..k T(n, n - j)A0621471 1 5 31 229 1961 19081 207775 2501801 32989969 472630861 7307593151 121247816845 2148321709561
RevRowLcmLcm k=0..n | T(n, k) | > 1A3593651 1 2 6 72 240 3600 75600 1411200 10160640 457228800 4191264000 184415616000 2054916864000
RevRowGcdGcd k=0..n | T(n, k) | > 1A0023781 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
RevRowMaxMax k=0..n | T(n, k) |A0028681 1 2 6 36 240 1800 15120 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
RevColMiddleT(n, n // 2)missing1 1 2 6 36 120 1200 4200 58800 211680 3810240 13970880 307359360 1141620480 29682132480
RevCentralET(2 n, n)A1875351 2 36 1200 58800 3810240 307359360 29682132480 3339239904000 428906814336000 61934143990118400
RevCentralOT(2 n + 1, n)A2480451 6 120 4200 211680 13970880 1141620480 111307996800 12614906304000 1629845894476800
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A3440511 1 5 37 361 4301 60001 954325 16984577 333572041 7151967181 165971975621 4139744524345
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3440501 -1 -3 -1 73 699 3001 -24697 -783999 -10946233 -80958779 656003919 40097528857 944102982419
RevTransNat0 k=0..n T(n, k) kmissing0 0 2 18 156 1460 15030 170142 2107448 28393416 413689770 6483520010 108777654612 1945345308348
RevTransNat1 k=0..n T(n, k) (k + 1)A0621471 1 5 31 229 1961 19081 207775 2501801 32989969 472630861 7307593151 121247816845 2148321709561
RevTransSqrs k=0..n T(n, k) k^2missing0 0 2 30 372 4580 58830 801402 11635400 180129672 2969097210 51989394710 964602295932
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0528971 2 8 44 304 2512 24064 261536 3173888 42483968 621159424 9841950208 167879268352 3065723549696
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3173641 -2 0 4 16 48 64 -800 -12288 -127232 -1150976 -9266688 -58726400 -68777984 7510646784 207794409472
RevDiagRow1T(n + 1, n)A0001421 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000
RevDiagRow2T(n + 2, n)A0012861 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800
RevDiagRow3T(n + 3, n)A0017541 12 120 1200 12600 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
RevDiagCol1T(n + 1, 1)A0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
RevDiagCol2T(n + 2, 2)A0833740 6 36 120 300 630 1176 2016 3240 4950 7260 10296 14196 19110 25200 32640 41616 52326 64980 79800
RevDiagCol3T(n + 3, 3)A2532850 24 240 1200 4200 11760 28224 60480 118800 217800 377520 624624 993720 1528800 2284800 3329280
RevPolysee docsmissing1 1 1 1 1 1 1 3 1 1 1 13 5 1 1 1 73 37 7 1 1 1 501 361 73 9 1 1 1 4051 4361 1009 121 11 1 1 1 37633
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
RevPolyRow3 k=0..3 T(3, k) n^kA0031541 13 37 73 121 181 253 337 433 541 661 793 937 1093 1261 1441 1633 1837 2053 2281 2521 2773 3037
RevPolyCol2 k=0..n T(n, k) 2^kA0251681 1 5 37 361 4361 62701 1044205 19748177 417787921 9770678101 250194150581 6959638411705
RevPolyCol3 k=0..n T(n, k) 3^kA3218371 1 7 73 1009 17341 355951 8488117 230439553 7013527129 236419161751 8740611892321 351566026652017
RevPolyDiag k=0..n T(n, k) n^kA2931461 1 5 73 2161 108101 8201701 878797165 126422091713 23514740267401 5492576235204901
InvTriangleT(n, k), 0 ≤ k ≤ nA2717031 0 1 0 -2 1 0 6 -6 1 0 -24 36 -12 1 0 120 -240 120 -20 1 0 -720 1800 -1200 300 -30 1 0 5040 -15120
InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -2 0 1 -6 6 0 1 -12 36 -24 0 1 -20 120 -240 120 0 1 -30 300 -1200 1800 -720 0 1 -42 630
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 6 6 0 1 12 36 24 0 1 20 120 240 120 0 1 30 300 1200 1800 720 0 1 42 630 4200 12600
InvAccsee docsmissing1 0 1 0 -2 -1 0 6 0 1 0 -24 12 0 1 0 120 -120 0 -20 -19 0 -720 1080 -120 180 150 151 0 5040 -10080
InvAccRevsee docsmissing1 1 1 1 -1 -1 1 -5 1 1 1 -11 25 1 1 1 -19 101 -139 -19 -19 1 -29 271 -929 871 151 151 1 -41 589
InvAntiDiagsee docsA1800471 0 0 1 0 -2 0 6 1 0 -24 -6 0 120 36 1 0 -720 -240 -12 0 5040 1800 120 1 0 -40320 -15120 -1200 -20
InvDiffx1T(n, k) (k+1)A3602051 0 2 0 -4 3 0 12 -18 4 0 -48 108 -48 5 0 240 -720 480 -100 6 0 -1440 5400 -4800 1500 -180 7 0
InvRowSum k=0..n T(n, k)A1118841 1 -1 1 1 -19 151 -1091 7841 -56519 396271 -2442439 7701409 145269541 -4833158329 104056218421
InvEvenSum k=0..n T(n, k) even(k)A0883121 0 1 -6 37 -260 2101 -19362 201097 -2326536 29668681 -413257790 6238931821 -101415565836
InvOddSum k=0..n T(n, k) odd(k)A0883130 1 -2 7 -36 241 -1950 18271 -193256 2270017 -29272410 410815351 -6231230412 101560835377
InvAltSum k=0..n T(n, k) (-1)^kA0002621 -1 3 -13 73 -501 4051 -37633 394353 -4596553 58941091 -824073141 12470162233 -202976401213
InvAbsSum k=0..n | T(n, k) |A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
InvDiagSum k=0..n // 2 T(n - k, k)A0010531 0 1 -2 7 -30 157 -972 6961 -56660 516901 -5225670 57999271 -701216922 9173819257 -129134686520
InvAccSum k=0..n j=0..k T(n, j)missing1 1 -3 7 -11 -39 721 -7433 68937 -621071 5482981 -46032249 330103357 -1056150263 -31272214791
InvAccRevSum k=0..n j=0..k T(n, n - j)A2024101 2 -1 -2 17 -94 487 -2386 9473 -638 -727729 14280542 -222283631 3235193378 -46058318473
InvRowLcmLcm k=0..n | T(n, k) | > 1A3593651 1 2 6 72 240 3600 75600 1411200 10160640 457228800 4191264000 184415616000 2054916864000
InvRowGcdGcd k=0..n | T(n, k) | > 1A0023781 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
InvRowMaxMax k=0..n | T(n, k) |A0028681 1 2 6 36 240 1800 15120 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
InvColMiddleT(n, n // 2)A3435811 0 -2 6 36 -240 -1200 12600 58800 -846720 -3810240 69854400 307359360 -6849722880 -29682132480
InvCentralET(2 n, n)A1875351 -2 36 -1200 58800 -3810240 307359360 -29682132480 3339239904000 -428906814336000
InvCentralOT(2 n + 1, n)A3677760 6 -240 12600 -846720 69854400 -6849722880 779155977600 -100919250432000 14668613050291200
InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A3440501 1 -3 1 73 -699 3001 24697 -783999 10946233 -80958779 -656003919 40097528857 -944102982419
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3440511 1 5 37 361 4301 60001 954325 16984577 333572041 7151967181 165971975621 4139744524345
InvTransNat0 k=0..n T(n, k) kA3173650 1 0 -3 16 -75 336 -1295 1632 55881 -1124000 16722981 -229985040 3089923837 -41225160144
InvTransNat1 k=0..n T(n, k) (k + 1)A2024101 2 -1 -2 17 -94 487 -2386 9473 -638 -727729 14280542 -222283631 3235193378 -46058318473
InvTransSqrs k=0..n T(n, k) k^2A2564670 1 2 -9 28 -55 -234 5047 -59464 620433 -6210710 60312791 -552386988 4291343641 -14786103682
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA3182231 1 -3 13 -71 441 -2699 9157 206193 -8443151 236126701 -6169406979 161388751657 -4327824442967
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0251681 1 5 37 361 4361 62701 1044205 19748177 417787921 9770678101 250194150581 6959638411705
InvDiagRow1T(n + 1, n)A0023780 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
InvDiagRow2T(n + 2, n)A0833740 6 36 120 300 630 1176 2016 3240 4950 7260 10296 14196 19110 25200 32640 41616 52326 64980 79800
InvDiagRow3T(n + 3, n)A2532850 -24 -240 -1200 -4200 -11760 -28224 -60480 -118800 -217800 -377520 -624624 -993720 -1528800
InvDiagCol1T(n + 1, 1)A0001421 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
InvDiagCol2T(n + 2, 2)A0012861 -6 36 -240 1800 -15120 141120 -1451520 16329600 -199584000 2634508800 -37362124800 566658892800
InvDiagCol3T(n + 3, 3)A0017541 -12 120 -1200 12600 -141120 1693440 -21772800 299376000 -4390848000 68497228800 -1133317785600
InvPolysee docsmissing1 0 1 0 1 1 0 -1 2 1 0 1 0 3 1 0 1 -4 3 4 1 0 -19 16 -9 8 5 1 0 151 -48 9 -8 15 6 1 0 -1091 64 63
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
InvPolyRow3 k=0..3 T(3, k) n^kmissing0 1 -4 -9 -8 5 36 91 176 297 460 671 936 1261 1652 2115 2656 3281 3996 4807 5720 6741 7876 9131
InvPolyCol2 k=0..n T(n, k) 2^kA3173641 2 0 -4 16 -48 64 800 -12288 127232 -1150976 9266688 -58726400 68777984 7510646784 -207794409472
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 3 -9 9 63 -621 3699 -14607 -17253 1310499 -20725713 249633657 -2506512681 18706941171
InvPolyDiag k=0..n T(n, k) n^kA3172791 1 0 -9 -32 225 3456 2695 -433152 -4495743 47872000 1768142871 6703534080 -597265448351
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 -2 0 1 -6 6 0 1 -12 36 -24 0 1 -20 120 -240 120 0 1 -30 300 -1200 1800 -720 0 1 -42 630
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA2717031 0 1 0 -2 1 0 6 -6 1 0 -24 36 -12 1 0 120 -240 120 -20 1 0 -720 1800 -1200 300 -30 1 0 5040 -15120
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA2717031 0 1 0 2 1 0 6 6 1 0 24 36 12 1 0 120 240 120 20 1 0 720 1800 1200 300 30 1 0 5040 15120 12600
Inv:RevAccsee docsmissing1 1 1 1 -1 -1 1 -5 1 1 1 -11 25 1 1 1 -19 101 -139 -19 -19 1 -29 271 -929 871 151 151 1 -41 589
Inv:RevAccRevsee docsmissing1 0 1 0 -2 -1 0 6 0 1 0 -24 12 0 1 0 120 -120 0 -20 -19 0 -720 1080 -120 180 150 151 0 5040 -10080
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 -2 1 -6 0 1 -12 6 1 -20 36 0 1 -30 120 -24 1 -42 300 -240 0 1 -56 630 -1200 120 1 -72
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 -4 0 1 -12 18 0 1 -24 108 -96 0 1 -40 360 -960 600 0 1 -60 900 -4800 9000 -4320 0 1 -84
Inv:RevRowSum k=0..n T(n, k)A1118841 1 -1 1 1 -19 151 -1091 7841 -56519 396271 -2442439 7701409 145269541 -4833158329 104056218421
Inv:RevEvenSum k=0..n T(n, k) even(k)A0969651 1 1 7 37 241 2101 18271 201097 2270017 29668681 410815351 6238931821 101560835377 1765092183037
Inv:RevOddSum k=0..n T(n, k) odd(k)A0969390 0 -2 -6 -36 -260 -1950 -19362 -193256 -2326536 -29272410 -413257790 -6231230412 -101415565836
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
Inv:RevAbsSum k=0..n | T(n, k) |A0002621 1 3 13 73 501 4051 37633 394353 4596553 58941091 824073141 12470162233 202976401213 3535017524403
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 -1 -5 -5 17 67 19 -505 -1295 2047 18587 19939 -182255 -701605 835267 12424447 17996849
Inv:RevAccSum k=0..n j=0..k T(n, j)A2024101 2 -1 -2 17 -94 487 -2386 9473 -638 -727729 14280542 -222283631 3235193378 -46058318473
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -3 7 -11 -39 721 -7433 68937 -621071 5482981 -46032249 330103357 -1056150263 -31272214791
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1A3593651 1 2 6 72 240 3600 75600 1411200 10160640 457228800 4191264000 184415616000 2054916864000
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0023781 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
Inv:RevRowMaxMax k=0..n | T(n, k) |A0028681 1 2 6 36 240 1800 15120 141120 1693440 21772800 299376000 4390848000 68497228800 1133317785600
Inv:RevColMiddleT(n, n // 2)missing1 1 -2 -6 36 120 -1200 -4200 58800 211680 -3810240 -13970880 307359360 1141620480 -29682132480
Inv:RevCentralET(2 n, n)A1875351 -2 36 -1200 58800 -3810240 307359360 -29682132480 3339239904000 -428906814336000
Inv:RevCentralOT(2 n + 1, n)A2480451 -6 120 -4200 211680 -13970880 1141620480 -111307996800 12614906304000 -1629845894476800
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)A3440501 1 -3 1 73 -699 3001 24697 -783999 10946233 -80958779 -656003919 40097528857 -944102982419
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3440511 -1 5 -37 361 -4301 60001 -954325 16984577 -333572041 7151967181 -165971975621 4139744524345
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 0 -2 6 -12 -20 570 -6342 61096 -564552 5086710 -43589810 322401948 -1201419804 -26439056462
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -3 7 -11 -39 721 -7433 68937 -621071 5482981 -46032249 330103357 -1056150263 -31272214791
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 0 -2 18 -84 220 1170 -30282 416248 -4963464 55896390 -603127910 6076256868 -51496123692
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA3173641 2 0 -4 16 -48 64 800 -12288 127232 -1150976 9266688 -58726400 68777984 7510646784 -207794409472
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0528971 -2 8 -44 304 -2512 24064 -261536 3173888 -42483968 621159424 -9841950208 167879268352
Inv:RevDiagRow1T(n + 1, n)A0001421 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
Inv:RevDiagRow2T(n + 2, n)A0012861 -6 36 -240 1800 -15120 141120 -1451520 16329600 -199584000 2634508800 -37362124800 566658892800
Inv:RevDiagRow3T(n + 3, n)A0017541 -12 120 -1200 12600 -141120 1693440 -21772800 299376000 -4390848000 68497228800 -1133317785600
Inv:RevDiagCol1T(n + 1, 1)A0023780 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
Inv:RevDiagCol2T(n + 2, 2)A0833740 6 36 120 300 630 1176 2016 3240 4950 7260 10296 14196 19110 25200 32640 41616 52326 64980 79800
Inv:RevDiagCol3T(n + 3, 3)A2532850 -24 -240 -1200 -4200 -11760 -28224 -60480 -118800 -217800 -377520 -624624 -993720 -1528800
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 -1 1 1 1 1 -3 1 1 1 1 13 -5 1 1 1 -19 -71 37 -7 1 1 1 151 441 -359 73 -9 1 1 1 -1091
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0031541 1 13 37 73 121 181 253 337 433 541 661 793 937 1093 1261 1441 1633 1837 2053 2281 2521 2773 3037
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA3182231 1 -3 13 -71 441 -2699 9157 206193 -8443151 236126701 -6169406979 161388751657 -4327824442967
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 -5 37 -359 4261 -58949 912745 -15139823 251548201 -3521449349 4011468781 3225489384745
Inv:RevPolyDiag k=0..n T(n, k) n^kA3182241 1 -3 37 -1007 47901 -3514499 367671697 -51952729023 9529552851193 -2201241933756899
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.