OEIS Similars: A360603
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A360603 | 1 0 1 0 1 1 0 2 2 4 0 8 6 12 38 0 64 32 48 152 728 0 1024 320 320 760 3640 26704 0 32768 6144 3840 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 4 2 2 0 38 12 6 8 0 728 152 48 32 64 0 26704 3640 760 320 320 1024 0 1866256 160224 |
Std | Accsee docs | A360860 | 1 0 1 0 1 2 0 2 4 8 0 8 14 26 64 0 64 96 144 296 1024 0 1024 1344 1664 2424 6064 32768 0 32768 |
Std | AccRevsee docs | missing | 1 1 1 1 2 2 4 6 8 8 38 50 56 64 64 728 880 928 960 1024 1024 26704 30344 31104 31424 31744 32768 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 2 1 0 8 2 0 64 6 4 0 1024 32 12 0 32768 320 48 38 0 2097152 6144 320 152 0 268435456 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 3 0 4 6 16 0 16 18 48 190 0 128 96 192 760 4368 0 2048 960 1280 3800 21840 186928 0 65536 |
Std | RowSum∑ k=0..n T(n, k) | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 44 184 27784 172448 252984656 2043308416 34517335949056 345910021290752 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 6 20 840 4984 1924704 15450800 66676168320 667036139776 35682886997673216 428191046169662720 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 0 -4 24 -656 22800 -1752256 237533856 -64632859904 33850299809280 -35336976976382464 |
Std | AbsSum∑ k=0..n | T(n, k) | | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 1 1 3 10 74 1068 33174 2103768 268670160 68736349688 35186791811616 36029484518264352 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 3 14 112 1624 45288 2561984 301180784 73287661696 36462899234816 36745066501115648 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 5 26 272 5544 216856 16312384 2383173776 682626582400 385749565831168 431629294745415936 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 456 331968 14774789120 1243919045591040 8761370365451477754839040 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A060818 | 1 1 1 2 2 8 8 16 16 128 128 256 256 1024 1024 2048 2048 32768 32768 65536 65536 262144 262144 |
Std | RowMaxMax k=0..n | T(n, k) | | A001187 | 1 1 1 4 38 728 26704 1866256 251548592 66296291072 34496488594816 35641657548953344 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 2 6 32 320 3840 85120 2179072 93929472 5009571840 404266942464 44353858830336 |
Std | CentralET(2 n, n) | missing | 1 1 6 320 85120 93929472 404266942464 6716119414996992 434520550032927621120 |
Std | CentralOT(2 n + 1, n) | missing | 0 2 32 3840 2179072 5009571840 44353858830336 1504410748959326208 197755130326096837345280 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A001187 | 1 1 1 4 38 728 26704 1866256 251548592 66296291072 34496488594816 35641657548953344 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 16 154 2608 77288 4152064 432852912 93188771456 42351673921280 40254010607690240 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -1 4 -6 448 8520 1225280 157813936 53198838656 28623144198912 32496822305472512 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 3 18 208 4520 184088 14215232 2114738320 613907105664 350565193742336 395600497726451968 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 5 26 272 5544 216856 16312384 2383173776 682626582400 385749565831168 431629294745415936 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 5 46 748 21256 1069688 97949792 16789858864 5504829120128 3499292318766848 4347675930504128768 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 3 16 150 2504 77472 4677904 571023120 142058571776 71626948215168 72752562631695616 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 -1 8 -26 1384 -7744 3546512 -26869424 129383174656 -1231849323136 70662262709911808 |
Std | DiagRow1T(n + 1, n) | A053549 | 0 1 2 12 152 3640 160224 13063792 2012388736 596666619648 344964885948160 392058233038486784 |
Std | DiagRow2T(n + 2, n) | A275462 | 0 2 6 48 760 21840 1121568 104510336 18111498624 5966666196480 3794613745429760 4704698796461841408 |
Std | DiagRow3T(n + 3, n) | missing | 0 8 32 320 6080 203840 11963392 1254124032 241486648320 87511104215040 60713819926876160 |
Std | DiagCol1T(n + 1, 1) | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Std | DiagCol2T(n + 2, 2) | A123903 | 1 2 6 32 320 6144 229376 16777216 2415919104 687194767360 387028092977152 432345564227567616 |
Std | DiagCol3T(n + 3, 3) | missing | 4 12 48 320 3840 86016 3670016 301989888 48318382080 15118284881920 9288674231451648 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 2 2 1 0 8 6 3 1 0 64 44 12 4 1 0 1024 744 132 20 5 1 0 32768 26368 3480 296 30 6 1 0 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 8 44 132 296 560 948 1484 2192 3096 4220 5588 7224 9152 11396 13980 16928 20264 24012 28196 32840 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 6 44 744 26368 1843584 250052096 66154070016 34473788096512 35634862681522176 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 12 132 3480 190992 20427888 4204362048 1679865554400 1318352489511168 2048849340757704192 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 6 132 10624 2377120 1275278208 1556175768896 4247982935900160 25771674683328961536 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A360603 | 1 0 -1 0 -1 1 0 -2 2 -4 0 -8 6 -12 38 0 -64 32 -48 152 -728 0 -1024 320 -320 760 -3640 26704 0 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 0 1 -1 0 -4 2 -2 0 38 -12 6 -8 0 -728 152 -48 32 -64 0 26704 -3640 760 -320 320 -1024 0 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 0 0 -2 0 -4 0 -8 -2 -14 24 0 -64 -32 -80 72 -656 0 -1024 -704 -1024 -264 -3904 22800 0 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 0 -4 -2 -4 -4 38 26 32 24 24 -728 -576 -624 -592 -656 -656 26704 23064 23824 23504 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -2 1 0 -8 2 0 -64 6 -4 0 -1024 32 -12 0 -32768 320 -48 38 0 -2097152 6144 -320 152 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 3 0 -4 6 -16 0 -16 18 -48 190 0 -128 96 -192 760 -4368 0 -2048 960 -1280 3800 -21840 |
Alt | RowSum∑ k=0..n T(n, k) | missing | 1 -1 0 -4 24 -656 22800 -1752256 237533856 -64632859904 33850299809280 -35336976976382464 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 44 184 27784 172448 252984656 2043308416 34517335949056 345910021290752 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -6 -20 -840 -4984 -1924704 -15450800 -66676168320 -667036139776 -35682886997673216 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 -1 -6 -62 -1004 -32458 -2091176 -268209888 -68702783096 -35181959749760 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 -1 -6 0 -760 15880 -1798720 212708272 -64847815296 32685851237376 -35349295469613824 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 1 -14 144 -3832 166520 -13971584 2162630288 -646113643648 373517746473984 -424031405223358208 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 456 331968 14774789120 1243919045591040 8761370365451477754839040 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A060818 | 1 1 1 2 2 8 8 16 16 128 128 256 256 1024 1024 2048 2048 32768 32768 65536 65536 262144 262144 |
Alt | RowMaxMax k=0..n | T(n, k) | | A001187 | 1 1 1 4 38 728 26704 1866256 251548592 66296291072 34496488594816 35641657548953344 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -2 6 32 -320 -3840 85120 2179072 -93929472 -5009571840 404266942464 44353858830336 |
Alt | CentralET(2 n, n) | missing | 1 -1 6 -320 85120 -93929472 404266942464 -6716119414996992 434520550032927621120 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -2 32 -3840 2179072 -5009571840 44353858830336 -1504410748959326208 197755130326096837345280 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A001187 | 1 -1 1 -4 38 -728 26704 -1866256 251548592 -66296291072 34496488594816 -35641657548953344 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 -1 -4 -6 -448 8520 -1225280 157813936 -53198838656 28623144198912 -32496822305472512 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 -16 154 -2608 77288 -4152064 432852912 -93188771456 42351673921280 -40254010607690240 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 1 -10 120 -3176 143720 -12219328 1925096432 -581480783744 339667446664704 -388694428246975744 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 1 -14 144 -3832 166520 -13971584 2162630288 -646113643648 373517746473984 -424031405223358208 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 -30 516 -16136 879880 -86169952 15493672656 -5246178049664 3402361850983680 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 -1 -8 -26 -1384 -7744 -3546512 -26869424 -129383174656 -1231849323136 -70662262709911808 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 3 -16 150 -2504 77472 -4677904 571023120 -142058571776 71626948215168 -72752562631695616 |
Alt | DiagRow1T(n + 1, n) | A053549 | 0 -1 2 -12 152 -3640 160224 -13063792 2012388736 -596666619648 344964885948160 -392058233038486784 |
Alt | DiagRow2T(n + 2, n) | A275462 | 0 -2 6 -48 760 -21840 1121568 -104510336 18111498624 -5966666196480 3794613745429760 |
Alt | DiagRow3T(n + 3, n) | missing | 0 -8 32 -320 6080 -203840 11963392 -1254124032 241486648320 -87511104215040 60713819926876160 |
Alt | DiagCol1T(n + 1, 1) | A006125 | -1 -1 -2 -8 -64 -1024 -32768 -2097152 -268435456 -68719476736 -35184372088832 -36028797018963968 |
Alt | DiagCol2T(n + 2, 2) | A123903 | 1 2 6 32 320 6144 229376 16777216 2415919104 687194767360 387028092977152 432345564227567616 |
Alt | DiagCol3T(n + 3, 3) | missing | -4 -12 -48 -320 -3840 -86016 -3670016 -301989888 -48318382080 -15118284881920 -9288674231451648 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 0 -2 1 0 -4 2 -3 1 0 24 -28 6 -4 1 0 -656 520 -96 12 -5 1 0 22800 -21248 2784 -232 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -4 -28 -96 -232 -460 -804 -1288 -1936 -2772 -3820 -5104 -6648 -8476 -10612 -13080 -15904 -19108 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 2 -28 520 -21248 1601408 -229299712 62786928640 -33441709801472 35023269286019072 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 6 -96 2784 -165792 18635424 -3969659904 1622608234176 -1291927826892288 2025355002796087296 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 2 -96 9024 -2185520 1218518400 -1518445583872 4193175940366336 -25598408463418984704 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 4 2 2 0 38 12 6 8 0 728 152 48 32 64 0 26704 3640 760 320 320 1024 0 1866256 160224 |
Rev | Accsee docs | missing | 1 1 1 1 2 2 4 6 8 8 38 50 56 64 64 728 880 928 960 1024 1024 26704 30344 31104 31424 31744 32768 |
Rev | AccRevsee docs | A360860 | 1 0 1 0 1 2 0 2 4 8 0 8 14 26 64 0 64 96 144 296 1024 0 1024 1344 1664 2424 6064 32768 0 32768 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 4 1 38 2 0 728 12 2 26704 152 6 0 1866256 3640 48 8 251548592 160224 760 32 0 66296291072 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 0 4 4 6 0 38 24 18 32 0 728 304 144 128 320 0 26704 7280 2280 1280 1600 6144 0 1866256 |
Rev | RowSum∑ k=0..n T(n, k) | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 6 44 840 27784 1924704 252984656 66676168320 34517335949056 35682886997673216 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 2 20 184 4984 172448 15450800 2043308416 667036139776 345910021290752 428191046169662720 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 0 4 24 656 22800 1752256 237533856 64632859904 33850299809280 35336976976382464 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 5 40 742 26862 1869952 251709608 66309377088 34498502111520 35642254320292032 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 5 26 272 5544 216856 16312384 2383173776 682626582400 385749565831168 431629294745415936 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 3 14 112 1624 45288 2561984 301180784 73287661696 36462899234816 36745066501115648 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 456 331968 14774789120 1243919045591040 8761370365451477754839040 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A060818 | 1 1 1 2 2 8 8 16 16 128 128 256 256 1024 1024 2048 2048 32768 32768 65536 65536 262144 262144 |
Rev | RowMaxMax k=0..n | T(n, k) | | A001187 | 1 1 1 4 38 728 26704 1866256 251548592 66296291072 34496488594816 35641657548953344 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 1 2 6 48 320 6080 85120 3261440 93929472 6890913792 404266942464 56505812385792 |
Rev | CentralET(2 n, n) | missing | 1 1 6 320 85120 93929472 404266942464 6716119414996992 434520550032927621120 |
Rev | CentralOT(2 n + 1, n) | missing | 1 2 48 6080 3261440 6890913792 56505812385792 1810502291803865088 229038060859020898467840 |
Rev | ColLeftT(n, 0) | A001187 | 1 1 1 4 38 728 26704 1866256 251548592 66296291072 34496488594816 35641657548953344 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 16 154 2608 77288 4152064 432852912 93188771456 42351673921280 40254010607690240 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 -4 -6 -448 8520 -1225280 157813936 -53198838656 28623144198912 -32496822305472512 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 6 48 600 12520 464832 32745328 4568184960 1278527145984 716269482151680 800278188948651776 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 3 14 112 1624 45288 2561984 301180784 73287661696 36462899234816 36745066501115648 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 10 108 1656 40280 1696992 133914928 20778833792 6425652803328 3949419816825600 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 6 44 744 26368 1843584 250052096 66154070016 34473788096512 35634862681522176 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 2 -28 520 -21248 1601408 -229299712 62786928640 -33441709801472 35023269286019072 |
Rev | DiagRow1T(n + 1, n) | A006125 | 1 1 2 8 64 1024 32768 2097152 268435456 68719476736 35184372088832 36028797018963968 |
Rev | DiagRow2T(n + 2, n) | A123903 | 1 2 6 32 320 6144 229376 16777216 2415919104 687194767360 387028092977152 432345564227567616 |
Rev | DiagRow3T(n + 3, n) | missing | 4 12 48 320 3840 86016 3670016 301989888 48318382080 15118284881920 9288674231451648 |
Rev | DiagCol1T(n + 1, 1) | A053549 | 0 1 2 12 152 3640 160224 13063792 2012388736 596666619648 344964885948160 392058233038486784 |
Rev | DiagCol2T(n + 2, 2) | A275462 | 0 2 6 48 760 21840 1121568 104510336 18111498624 5966666196480 3794613745429760 4704698796461841408 |
Rev | DiagCol3T(n + 3, 3) | missing | 0 8 32 320 6080 203840 11963392 1254124032 241486648320 87511104215040 60713819926876160 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 4 2 1 1 38 8 3 1 1 728 64 16 4 1 1 26704 1024 150 28 5 1 1 1866256 32768 2504 344 44 6 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A137882 | 4 8 16 28 44 64 88 116 148 184 224 268 316 368 424 484 548 616 688 764 844 928 1016 1108 1204 1304 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 3 16 150 2504 77472 4677904 571023120 142058571776 71626948215168 72752562631695616 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 4 28 344 7664 327856 28399552 5087820896 1874962992896 1405716628585984 2128210103786833408 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 3 28 694 46688 8522368 3973747904 4461875482416 11637713146717184 68964248215522445696 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.