HERMITEH[0] 1
[1] 0, 2
[2] 2, 0, 4
[3] 0, 12, 0, 8
[4] 12, 0, 48, 0, 16
[5] 0, 120, 0, 160, 0, 32

      OEIS Similars: A060821

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0608211 0 2 2 0 4 0 12 0 8 12 0 48 0 16 0 120 0 160 0 32 120 0 720 0 480 0 64 0 1680 0 3360 0 1344 0 128
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 2 0 4 0 2 8 0 12 0 16 0 48 0 12 32 0 160 0 120 0 64 0 480 0 720 0 120 128 0 1344 0 3360 0 1680 0
StdAccsee docsmissing1 0 2 2 2 6 0 12 12 20 12 12 60 60 76 0 120 120 280 280 312 120 120 840 840 1320 1320 1384 0 1680
StdAccRevsee docsmissing1 2 2 4 4 6 8 8 20 20 16 16 64 64 76 32 32 192 192 312 312 64 64 544 544 1264 1264 1384 128 128
StdAntiDiagsee docsmissing1 0 2 2 0 0 12 12 4 0 0 0 120 120 48 8 0 0 0 0 1680 1680 720 160 16 0 0 0 0 0 30240 30240 13440
StdDiffx1T(n, k) (k+1)missing1 0 4 2 0 12 0 24 0 32 12 0 144 0 80 0 240 0 640 0 192 120 0 2160 0 2400 0 448 0 3360 0 13440 0
StdRowSum k=0..n T(n, k)A0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
StdEvenSum k=0..n T(n, k) even(k)missing1 0 6 0 76 0 1384 0 32400 0 921184 0 30710464 0 1171979904 0 50305536256 0 2396286830080 0
StdOddSum k=0..n T(n, k) odd(k)missing0 2 0 20 0 312 0 6512 0 168992 0 5222208 0 186753920 0 7573069568 0 342949298688 0 17138748412928 0
StdAltSum k=0..n T(n, k) (-1)^kA0008981 -2 6 -20 76 -312 1384 -6512 32400 -168992 921184 -5222208 30710464 -186753920 1171979904
StdAbsSum k=0..n | T(n, k) |A0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 4 0 28 0 296 0 4256 0 77792 0 1728448 0 45250816 0 1364438272 0 46571904512 0 1775190124544 0
StdAccSum k=0..n j=0..k T(n, j)missing1 2 10 44 220 1112 5944 32720 187408 1106720 6753184 42400448 273903040 1816082816 12350588800
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 4 14 56 236 1072 5128 25888 136592 752192 4301024 25488256 156043456 985225984 6401089664
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 48 480 2880 13440 53760 967680 4838400 106444800 638668800 1107025920 15498362880
StdRowGcdGcd k=0..n | T(n, k) | > 1A0161161 2 2 4 4 8 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1024 2048 2048 4096 4096 8192 8192
StdRowMaxMax k=0..n | T(n, k) |A2772811 2 4 12 48 160 720 3360 13440 80640 403200 2217600 13305600 69189120 484323840 2905943040
StdColMiddleT(n, n // 2)missing1 0 0 12 48 0 0 3360 13440 0 0 1774080 7096320 0 0 1383782400 5535129600 0 0 1430277488640
StdCentralET(2 n, n)missing1 0 48 0 13440 0 7096320 0 5535129600 0 5721109954560 0 7368789621473280 0 11368989701701632000 0
StdCentralOT(2 n + 1, n)missing0 12 0 3360 0 1774080 0 1383782400 0 1430277488640 0 1842197405368320 0 2842247425425408000 0
StdColLeftT(n, 0)A0679941 0 2 0 12 0 120 0 1680 0 30240 0 665280 0 17297280 0 518918400 0 17643225600 0 670442572800 0
StdColRightT(n, n)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdBinConv k=0..n C(n, k) T(n, k)missing1 2 6 44 316 2232 18184 157712 1419408 13474592 133216864 1363217088 14432480704 157455161216
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 6 44 316 2232 18184 157712 1419408 13474592 133216864 1363217088 14432480704 157455161216
StdTransNat0 k=0..n T(n, k) kmissing0 2 8 36 160 760 3744 19376 104192 583200 3379840 20266048 125332992 798472064 5229109760
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 4 14 56 236 1072 5128 25888 136592 752192 4301024 25488256 156043456 985225984 6401089664
StdTransSqrs k=0..n T(n, k) k^2missing0 2 16 84 448 2360 12864 71792 414208 2458656 15043840 94622528 611718144 4057129856 27586327552
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 12 56 400 2592 21184 166784 1519872 13713920 136858624 1370830848 14785220608 161170202624
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 2 12 56 400 2592 21184 166784 1519872 13713920 136858624 1370830848 14785220608 161170202624
StdDiagRow2T(n + 2, n)A0018152 12 48 160 480 1344 3584 9216 23040 56320 135168 319488 745472 1720320 3932160 8912896 20054016
StdDiagCol1T(n + 1, 1)A0679942 0 12 0 120 0 1680 0 30240 0 665280 0 17297280 0 518918400 0 17643225600 0 670442572800 0
StdDiagCol2T(n + 2, 2)missing4 0 48 0 720 0 13440 0 302400 0 7983360 0 242161920 0 8302694400 0 317578060800 0 13408851456000 0
StdDiagCol3T(n + 3, 3)missing8 0 160 0 3360 0 80640 0 2217600 0 69189120 0 2421619200 0 94097203200 0 4022655436800 0
StdPolysee docsmissing1 0 1 2 2 1 0 6 4 1 12 20 18 6 1 0 76 88 38 8 1 120 312 460 252 66 10 1 0 1384 2544 1740 560 102 12
StdPolyRow1 k=0..1 T(1, k) n^kA0058430 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
StdPolyRow2 k=0..2 T(2, k) n^kA0058992 6 18 38 66 102 146 198 258 326 402 486 578 678 786 902 1026 1158 1298 1446 1602 1766 1938 2118
StdPolyRow3 k=0..3 T(3, k) n^kmissing0 20 88 252 560 1060 1800 2828 4192 5940 8120 10780 13968 17732 22120 27180 32960 39508 46872 55100
StdPolyCol2 k=0..n T(n, k) 2^kA1273941 4 18 88 460 2544 14776 89632 565392 3695680 24959776 173752704 1244125888 9146568448 68933546880
StdPolyCol3 k=0..n T(n, k) 3^kA0799491 6 38 252 1740 12456 92136 702288 5503632 44258400 364615776 3072862656 26458723008 232501041792
StdPolyDiag k=0..n T(n, k) n^kmissing1 2 18 252 4876 120600 3634104 129166352 5290403472 245355218208 12709342270240 727284248906688
AltTriangleT(n, k), 0 ≤ k ≤ nA0608211 0 -2 2 0 4 0 -12 0 -8 12 0 48 0 16 0 -120 0 -160 0 -32 120 0 720 0 480 0 64 0 -1680 0 -3360 0
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -2 0 4 0 2 -8 0 -12 0 16 0 48 0 12 -32 0 -160 0 -120 0 64 0 480 0 720 0 120 -128 0 -1344 0 -3360
AltAccsee docsmissing1 0 -2 2 2 6 0 -12 -12 -20 12 12 60 60 76 0 -120 -120 -280 -280 -312 120 120 840 840 1320 1320 1384
AltAccRevsee docsmissing1 -2 -2 4 4 6 -8 -8 -20 -20 16 16 64 64 76 -32 -32 -192 -192 -312 -312 64 64 544 544 1264 1264 1384
AltAntiDiagsee docsmissing1 0 2 -2 0 0 12 -12 4 0 0 0 120 -120 48 -8 0 0 0 0 1680 -1680 720 -160 16 0 0 0 0 0 30240 -30240
AltDiffx1T(n, k) (k+1)missing1 0 -4 2 0 12 0 -24 0 -32 12 0 144 0 80 0 -240 0 -640 0 -192 120 0 2160 0 2400 0 448 0 -3360 0
AltRowSum k=0..n T(n, k)A0008981 -2 6 -20 76 -312 1384 -6512 32400 -168992 921184 -5222208 30710464 -186753920 1171979904
AltEvenSum k=0..n T(n, k) even(k)missing1 0 6 0 76 0 1384 0 32400 0 921184 0 30710464 0 1171979904 0 50305536256 0 2396286830080 0
AltOddSum k=0..n T(n, k) odd(k)missing0 -2 0 -20 0 -312 0 -6512 0 -168992 0 -5222208 0 -186753920 0 -7573069568 0 -342949298688 0
AltAltSum k=0..n T(n, k) (-1)^kA0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
AltAbsSum k=0..n | T(n, k) |A0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
AltDiagSum k=0..n // 2 T(n - k, k)A2722611 0 0 0 4 0 40 0 576 0 10528 0 233920 0 6124032 0 184656640 0 6302821888 0 240245858304 0
AltAccSum k=0..n j=0..k T(n, j)missing1 -2 10 -44 220 -1112 5944 -32720 187408 -1106720 6753184 -42400448 273903040 -1816082816
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -4 14 -56 236 -1072 5128 -25888 136592 -752192 4301024 -25488256 156043456 -985225984 6401089664
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 48 480 2880 13440 53760 967680 4838400 106444800 638668800 1107025920 15498362880
AltRowGcdGcd k=0..n | T(n, k) | > 1A0161161 2 2 4 4 8 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1024 2048 2048 4096 4096 8192 8192
AltRowMaxMax k=0..n | T(n, k) |A2772811 2 4 12 48 160 720 3360 13440 80640 403200 2217600 13305600 69189120 484323840 2905943040
AltColMiddleT(n, n // 2)missing1 0 0 -12 48 0 0 -3360 13440 0 0 -1774080 7096320 0 0 -1383782400 5535129600 0 0 -1430277488640
AltCentralET(2 n, n)missing1 0 48 0 13440 0 7096320 0 5535129600 0 5721109954560 0 7368789621473280 0 11368989701701632000 0
AltCentralOT(2 n + 1, n)missing0 -12 0 -3360 0 -1774080 0 -1383782400 0 -1430277488640 0 -1842197405368320 0 -2842247425425408000
AltColLeftT(n, 0)A0679941 0 2 0 12 0 120 0 1680 0 30240 0 665280 0 17297280 0 518918400 0 17643225600 0 670442572800 0
AltColRightT(n, n)A0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
AltBinConv k=0..n C(n, k) T(n, k)missing1 -2 6 -44 316 -2232 18184 -157712 1419408 -13474592 133216864 -1363217088 14432480704
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 6 -44 316 -2232 18184 -157712 1419408 -13474592 133216864 -1363217088 14432480704
AltTransNat0 k=0..n T(n, k) kmissing0 -2 8 -36 160 -760 3744 -19376 104192 -583200 3379840 -20266048 125332992 -798472064 5229109760
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -4 14 -56 236 -1072 5128 -25888 136592 -752192 4301024 -25488256 156043456 -985225984 6401089664
AltTransSqrs k=0..n T(n, k) k^2missing0 -2 16 -84 448 -2360 12864 -71792 414208 -2458656 15043840 -94622528 611718144 -4057129856
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -2 12 -56 400 -2592 21184 -166784 1519872 -13713920 136858624 -1370830848 14785220608
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 12 -56 400 -2592 21184 -166784 1519872 -13713920 136858624 -1370830848 14785220608
AltDiagRow2T(n + 2, n)A0018152 -12 48 -160 480 -1344 3584 -9216 23040 -56320 135168 -319488 745472 -1720320 3932160 -8912896
AltDiagCol1T(n + 1, 1)A067994-2 0 -12 0 -120 0 -1680 0 -30240 0 -665280 0 -17297280 0 -518918400 0 -17643225600 0 -670442572800
AltDiagCol2T(n + 2, 2)missing4 0 48 0 720 0 13440 0 302400 0 7983360 0 242161920 0 8302694400 0 317578060800 0 13408851456000 0
AltDiagCol3T(n + 3, 3)missing-8 0 -160 0 -3360 0 -80640 0 -2217600 0 -69189120 0 -2421619200 0 -94097203200 0 -4022655436800 0
AltPolysee docsmissing1 0 1 2 -2 1 0 6 -4 1 12 -20 18 -6 1 0 76 -88 38 -8 1 120 -312 460 -252 66 -10 1 0 1384 -2544 1740
AltPolyRow1 k=0..1 T(1, k) n^kA0058430 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50
AltPolyRow2 k=0..2 T(2, k) n^kA0058992 6 18 38 66 102 146 198 258 326 402 486 578 678 786 902 1026 1158 1298 1446 1602 1766 1938 2118
AltPolyRow3 k=0..3 T(3, k) n^kmissing0 -20 -88 -252 -560 -1060 -1800 -2828 -4192 -5940 -8120 -10780 -13968 -17732 -22120 -27180 -32960
AltPolyCol2 k=0..n T(n, k) 2^kA1273941 -4 18 -88 460 -2544 14776 -89632 565392 -3695680 24959776 -173752704 1244125888 -9146568448
AltPolyCol3 k=0..n T(n, k) 3^kA0799491 -6 38 -252 1740 -12456 92136 -702288 5503632 -44258400 364615776 -3072862656 26458723008
AltPolyDiag k=0..n T(n, k) n^kmissing1 -2 18 -252 4876 -120600 3634104 -129166352 5290403472 -245355218208 12709342270240
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 2 0 4 0 2 8 0 12 0 16 0 48 0 12 32 0 160 0 120 0 64 0 480 0 720 0 120 128 0 1344 0 3360 0 1680 0
RevAccsee docsmissing1 2 2 4 4 6 8 8 20 20 16 16 64 64 76 32 32 192 192 312 312 64 64 544 544 1264 1264 1384 128 128
RevAccRevsee docsmissing1 0 2 2 2 6 0 12 12 20 12 12 60 60 76 0 120 120 280 280 312 120 120 840 840 1320 1320 1384 0 1680
RevAntiDiagsee docsmissing1 2 4 0 8 0 16 0 2 32 0 12 64 0 48 0 128 0 160 0 256 0 480 0 12 512 0 1344 0 120 1024 0 3584 0 720
RevDiffx1T(n, k) (k+1)missing1 2 0 4 0 6 8 0 36 0 16 0 144 0 60 32 0 480 0 600 0 64 0 1440 0 3600 0 840 128 0 4032 0 16800 0
RevRowSum k=0..n T(n, k)A0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
RevEvenSum k=0..n T(n, k) even(k)A0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
RevAltSum k=0..n T(n, k) (-1)^kA0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
RevAbsSum k=0..n | T(n, k) |A0008981 2 6 20 76 312 1384 6512 32400 168992 921184 5222208 30710464 186753920 1171979904 7573069568
RevDiagSum k=0..n // 2 T(n - k, k)missing1 2 4 8 18 44 112 288 748 1976 5328 14624 40696 114576 326272 939776 2736528 8048672 23893312
RevAccSum k=0..n j=0..k T(n, j)missing1 4 14 56 236 1072 5128 25888 136592 752192 4301024 25488256 156043456 985225984 6401089664
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 10 44 220 1112 5944 32720 187408 1106720 6753184 42400448 273903040 1816082816 12350588800
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 48 480 2880 13440 53760 967680 4838400 106444800 638668800 1107025920 15498362880
RevRowGcdGcd k=0..n | T(n, k) | > 1A0161161 2 2 4 4 8 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1024 2048 2048 4096 4096 8192 8192
RevRowMaxMax k=0..n | T(n, k) |A2772811 2 4 12 48 160 720 3360 13440 80640 403200 2217600 13305600 69189120 484323840 2905943040
RevColMiddleT(n, n // 2)missing1 2 0 0 48 160 0 0 13440 48384 0 0 7096320 26357760 0 0 5535129600 20910489600 0 0 5721109954560
RevCentralET(2 n, n)missing1 0 48 0 13440 0 7096320 0 5535129600 0 5721109954560 0 7368789621473280 0 11368989701701632000 0
RevCentralOT(2 n + 1, n)missing2 0 160 0 48384 0 26357760 0 20910489600 0 21844238008320 0 28341498544128000 0
RevColLeftT(n, 0)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
RevColRightT(n, n)A0679941 0 2 0 12 0 120 0 1680 0 30240 0 665280 0 17297280 0 518918400 0 17643225600 0 670442572800 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 2 6 44 316 2232 18184 157712 1419408 13474592 133216864 1363217088 14432480704 157455161216
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 6 -44 316 -2232 18184 -157712 1419408 -13474592 133216864 -1363217088 14432480704
RevTransNat0 k=0..n T(n, k) kmissing0 0 4 24 144 800 4560 26208 155008 937728 5832000 37178240 243192576 1629328896 11178608896
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 2 10 44 220 1112 5944 32720 187408 1106720 6753184 42400448 273903040 1816082816 12350588800
RevTransSqrs k=0..n T(n, k) k^2missing0 0 8 48 384 2560 17760 119616 820736 5649408 39565440 280656640 2026033152 14858268672
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA1273941 4 18 88 460 2544 14776 89632 565392 3695680 24959776 173752704 1244125888 9146568448 68933546880
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1273941 -4 18 -88 460 -2544 14776 -89632 565392 -3695680 24959776 -173752704 1244125888 -9146568448
RevDiagRow1T(n + 1, n)A0679942 0 12 0 120 0 1680 0 30240 0 665280 0 17297280 0 518918400 0 17643225600 0 670442572800 0
RevDiagRow2T(n + 2, n)missing4 0 48 0 720 0 13440 0 302400 0 7983360 0 242161920 0 8302694400 0 317578060800 0 13408851456000 0
RevDiagRow3T(n + 3, n)missing8 0 160 0 3360 0 80640 0 2217600 0 69189120 0 2421619200 0 94097203200 0 4022655436800 0
RevDiagCol2T(n + 2, 2)A0018152 12 48 160 480 1344 3584 9216 23040 56320 135168 319488 745472 1720320 3932160 8912896 20054016
RevPolysee docsmissing1 2 1 4 2 1 8 6 2 1 16 20 12 2 1 32 76 56 22 2 1 64 312 400 116 36 2 1 128 1384 2592 1420 200 54 2
RevPolyRow1 k=0..1 T(1, k) n^kA0556422 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RevPolyRow2 k=0..2 T(2, k) n^kA2558434 6 12 22 36 54 76 102 132 166 204 246 292 342 396 454 516 582 652 726 804 886 972 1062 1156 1254
RevPolyRow3 k=0..3 T(3, k) n^kmissing8 20 56 116 200 308 440 596 776 980 1208 1460 1736 2036 2360 2708 3080 3476 3896 4340 4808 5300
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 2 12 56 400 2592 21184 166784 1519872 13713920 136858624 1370830848 14785220608 161170202624
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 2 22 116 1420 11192 150184 1509104 21941392 261193760 4076893024 55168662848 917562144448
RevPolyDiag k=0..n T(n, k) n^kmissing1 2 12 116 3856 79032 6549184 205783664 31764218112 1344906439712 333044815105024 17734162412044608
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.