FIBOLUCASINV[0] 1
[1] -2, 1
[2] 3, -2, 1
[3] -4, 2, -2, 1
[4] 6, -2, 1, -2, 1
[5] -10, 5, 0, 0, -2, 1

      OEIS Similars: A375025

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3750251 -2 1 3 -2 1 -4 2 -2 1 6 -2 1 -2 1 -10 5 0 0 -2 1 15 -10 5 2 -1 -2 1 -20 10 -12 6 4 -2 -2 1 30 -8
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 -2 1 -2 3 1 -2 2 -4 1 -2 1 -2 6 1 -2 0 0 5 -10 1 -2 -1 2 5 -10 15 1 -2 -2 4 6 -12 10 -20 1 -2
StdInvT-1(n, k), 0 ≤ k ≤ nA1240381 2 1 1 2 1 2 2 2 1 1 4 3 2 1 2 3 6 4 2 1 1 6 6 8 5 2 1 2 4 12 10 10 6 2 1 1 8 10 20 15 12 7 2 1 2
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA3744391 1 2 1 2 1 1 2 2 2 1 2 3 4 1 1 2 4 6 3 2 1 2 5 8 6 6 1 1 2 6 10 10 12 4 2 1 2 7 12 15 20 10 8 1 1
StdAccsee docsmissing1 -2 -1 3 1 2 -4 -2 -4 -3 6 4 5 3 4 -10 -5 -5 -5 -7 -6 15 5 10 12 11 9 10 -20 -10 -22 -16 -12 -14
StdAccRevsee docsmissing1 1 -1 1 -1 2 1 -1 1 -3 1 -1 0 -2 4 1 -1 -1 -1 4 -6 1 -1 -2 0 5 -5 10 1 -1 -3 1 7 -5 5 -15 1 -1 -4
StdAntiDiagsee docsmissing1 -2 3 1 -4 -2 6 2 1 -10 -2 -2 15 5 1 1 -20 -10 0 -2 30 10 5 0 1 -52 -8 -12 2 -2 78 26 4 6 -1 1 -96
StdDiffx1T(n, k) (k+1)missing1 -2 2 3 -4 3 -4 4 -6 4 6 -4 3 -8 5 -10 10 0 0 -10 6 15 -20 15 8 -5 -12 7 -20 20 -36 24 20 -12 -14
StdRowSum k=0..n T(n, k)A0869901 -1 2 -3 4 -6 10 -15 20 -30 52 -78 96 -144 282 -423 420 -630 1660 -2490 1304 -1956 11332 -16998
StdEvenSum k=0..n T(n, k) even(k)missing1 -2 4 -6 8 -12 20 -30 40 -60 104 -156 192 -288 564 -846 840 -1260 3320 -4980 2608 -3912 22664
StdOddSum k=0..n T(n, k) odd(k)A0869900 1 -2 3 -4 6 -10 15 -20 30 -52 78 -96 144 -282 423 -420 630 -1660 2490 -1304 1956 -11332 16998
StdAltSum k=0..n T(n, k) (-1)^kA3750261 -3 6 -9 12 -18 30 -45 60 -90 156 -234 288 -432 846 -1269 1260 -1890 4980 -7470 3912 -5868 33996
StdAbsSum k=0..n | T(n, k) |missing1 3 6 9 12 18 36 57 78 138 276 450 630 1368 2736 4617 7974 16578 33156 57774 111636 225228 450456
StdDiagSum k=0..n // 2 T(n - k, k)missing1 -2 4 -6 9 -14 22 -32 46 -72 114 -162 225 -366 606 -816 1038 -1868 3424 -4076 3994 -9660 21828
StdAccSum k=0..n j=0..k T(n, j)missing1 -3 6 -13 22 -38 72 -125 190 -310 580 -962 1308 -2064 4236 -6909 7566 -11550 31140 -50630 31060
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 2 -2 2 -4 8 -10 10 -20 44 -52 36 -96 276 -282 -6 -420 2060 -1660 -2372 -1304 18752 -11332
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 6 4 6 10 30 60 240 1144 780 1440 327600 176814000 3543072957846 531150900 37992200400
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |missing1 2 3 4 6 10 15 20 30 52 78 96 150 282 426 820 1616 3032 5368 10416 19440 38580 72540 137680 266698
StdColMiddleT(n, n // 2)missing1 -2 -2 2 1 0 2 6 8 -22 -30 -30 -50 152 218 310 460 -1320 -1840 -2748 -3999 11328 15678 24762 35396
StdCentralET(2 n, n)missing1 -2 1 2 8 -30 -50 218 460 -1840 -3999 15678 35396 -136340 -315300 1200330 2827260 -10668888
StdCentralOT(2 n + 1, n)missing-2 2 0 6 -22 -30 152 310 -1320 -2748 11328 24762 -99140 -223060 876600 2016630 -7817112 -18291720
StdColLeftT(n, 0)A0869901 -2 3 -4 6 -10 15 -20 30 -52 78 -96 144 -282 423 -420 630 -1660 2490 -1304 1956 -11332 16998 3896
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)missing1 -1 0 -3 -3 6 44 93 -21 -741 -2176 -1404 11676 47312 62292 -158003 -970137 -1883355 1375184
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 3 8 17 29 46 108 385 1259 3023 4584 2132 -4324 22032 215924 769617 1378151 -139439 -7853016
StdTransNat0 k=0..n T(n, k) kmissing0 1 0 1 -2 2 -2 5 -10 10 -8 26 -60 48 -6 141 -426 210 400 830 -3676 652 7420 5666 -37892 -1948
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 0 2 -2 2 -4 8 -10 10 -20 44 -52 36 -96 276 -282 -6 -420 2060 -1660 -2372 -1304 18752 -11332
StdTransSqrs k=0..n T(n, k) k^2missing0 1 2 3 0 -2 -2 7 0 -10 -12 46 8 -96 -90 399 144 -1074 -820 4090 2016 -12748 -8724 46678 26560
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 5 17 45 121 405 1345 3645 9545 32805 114577 295245 687129 2657205 10509537 23914845 38355945
StdDiagRow1T(n + 1, n)A055642-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
StdDiagRow2T(n + 2, n)A0014773 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25
StdDiagRow3T(n + 3, n)A005843-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
StdDiagCol1T(n + 1, 1)missing1 -2 2 -2 5 -10 10 -8 26 -60 48 -6 141 -426 210 400 830 -3676 652 7420 5666 -37892 -1948 106928
StdDiagCol2T(n + 2, 2)missing1 -2 1 0 5 -12 4 8 30 -90 3 144 213 -820 -200 2016 1838 -8724 -3710 26560 18946 -103032 -53464
StdDiagCol3T(n + 3, 3)missing1 -2 0 2 6 -16 -4 30 45 -150 -72 394 410 -1616 -1008 5048 4362 -19140 -13280 65140 51516 -240712
StdPolysee docsmissing1 -2 1 3 -1 1 -4 2 0 1 6 -3 3 1 1 -10 4 0 6 2 1 15 -6 6 11 11 3 1 -20 10 0 36 36 18 4 1 30 -15 15
StdPolyRow1 k=0..1 T(1, k) n^kA000027-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
StdPolyRow2 k=0..2 T(2, k) n^kA0591003 2 3 6 11 18 27 38 51 66 83 102 123 146 171 198 227 258 291 326 363 402 443 486 531 578 627 678
StdPolyRow3 k=0..3 T(3, k) n^kmissing-4 -3 0 11 36 81 152 255 396 581 816 1107 1460 1881 2376 2951 3612 4365 5216 6171 7236 8417 9720
StdPolyCol2 k=0..n T(n, k) 2^kA1269821 0 3 0 6 0 15 0 30 0 78 0 144 0 423 0 630 0 2490 0 1956 0 16998 0 -5844 0 142860 0 -235740 0
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 1 6 11 36 86 246 631 1716 4526 12156 32286 86256 229776 613206 1634511 4359396 11624006 31000116
StdPolyDiag k=0..n T(n, k) n^kmissing1 -1 3 11 142 1890 30375 565755 12017886 286949810 7611882478 222176419182 7078092232824
AltTriangleT(n, k), 0 ≤ k ≤ nA3750251 -2 -1 3 2 1 -4 -2 -2 -1 6 2 1 2 1 -10 -5 0 0 -2 -1 15 10 5 -2 -1 2 1 -20 -10 -12 -6 4 2 -2 -1 30
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 -2 1 2 3 -1 -2 -2 -4 1 2 1 2 6 -1 -2 0 0 -5 -10 1 2 -1 -2 5 10 15 -1 -2 2 4 -6 -12 -10 -20 1 2
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 2 1 -7 -2 1 -6 -2 2 1 9 4 -5 -2 1 38 13 -10 -4 2 1 -79 -26 14 8 -3 -2 1 -350 -120 92 38 -14 -6 2
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 2 1 -2 -7 1 2 -2 -6 1 -2 -5 4 9 1 2 -4 -10 13 38 1 -2 -3 8 14 -26 -79 1 2 -6 -14 38 92 -120
AltAccsee docsmissing1 -2 -3 3 5 6 -4 -6 -8 -9 6 8 9 11 12 -10 -15 -15 -15 -17 -18 15 25 30 28 27 29 30 -20 -30 -42 -48
AltAccRevsee docsmissing1 -1 -3 1 3 6 -1 -3 -5 -9 1 3 4 6 12 -1 -3 -3 -3 -8 -18 1 3 2 0 5 15 30 -1 -3 -1 3 -3 -15 -25 -45 1
AltAntiDiagsee docsmissing1 -2 3 -1 -4 2 6 -2 1 -10 2 -2 15 -5 1 -1 -20 10 0 2 30 -10 5 0 1 -52 8 -12 -2 -2 78 -26 4 -6 -1 -1
AltDiffx1T(n, k) (k+1)missing1 -2 -2 3 4 3 -4 -4 -6 -4 6 4 3 8 5 -10 -10 0 0 -10 -6 15 20 15 -8 -5 12 7 -20 -20 -36 -24 20 12
AltRowSum k=0..n T(n, k)A3750261 -3 6 -9 12 -18 30 -45 60 -90 156 -234 288 -432 846 -1269 1260 -1890 4980 -7470 3912 -5868 33996
AltEvenSum k=0..n T(n, k) even(k)missing1 -2 4 -6 8 -12 20 -30 40 -60 104 -156 192 -288 564 -846 840 -1260 3320 -4980 2608 -3912 22664
AltOddSum k=0..n T(n, k) odd(k)A0869900 -1 2 -3 4 -6 10 -15 20 -30 52 -78 96 -144 282 -423 420 -630 1660 -2490 1304 -1956 11332 -16998
AltAltSum k=0..n T(n, k) (-1)^kA0869901 -1 2 -3 4 -6 10 -15 20 -30 52 -78 96 -144 282 -423 420 -630 1660 -2490 1304 -1956 11332 -16998
AltAbsSum k=0..n | T(n, k) |missing1 3 6 9 12 18 36 57 78 138 276 450 630 1368 2736 4617 7974 16578 33156 57774 111636 225228 450456
AltDiagSum k=0..n // 2 T(n - k, k)missing1 -2 2 -2 5 -10 10 -8 26 -60 48 -6 141 -426 210 400 830 -3676 652 7420 5666 -37892 -1948 106928
AltAccSum k=0..n j=0..k T(n, j)missing1 -5 14 -27 46 -90 184 -315 470 -810 1588 -2574 3372 -5616 12108 -19035 19302 -32130 92500 -141930
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -4 10 -18 26 -36 56 -90 130 -180 284 -468 660 -864 1428 -2538 3378 -3780 7100 -14940 17548 -11736
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 6 4 6 10 30 60 240 1144 780 1440 327600 176814000 3543072957846 531150900 37992200400
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |missing1 2 3 4 6 10 15 20 30 52 78 96 150 282 426 820 1616 3032 5368 10416 19440 38580 72540 137680 266698
AltColMiddleT(n, n // 2)missing1 -2 2 -2 1 0 -2 -6 8 -22 30 30 -50 152 -218 -310 460 -1320 1840 2748 -3999 11328 -15678 -24762
AltCentralET(2 n, n)missing1 2 1 -2 8 30 -50 -218 460 1840 -3999 -15678 35396 136340 -315300 -1200330 2827260 10668888
AltCentralOT(2 n + 1, n)missing-2 -2 0 -6 -22 30 152 -310 -1320 2748 11328 -24762 -99140 223060 876600 -2016630 -7817112 18291720
AltColLeftT(n, 0)A0869901 -2 3 -4 6 -10 15 -20 30 -52 78 -96 144 -282 423 -420 630 -1660 2490 -1304 1956 -11332 16998 3896
AltBinConv k=0..n C(n, k) T(n, k)missing1 -3 8 -17 29 -46 108 -385 1259 -3023 4584 -2132 -4324 -22032 215924 -769617 1378151 139439
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 0 3 -3 -6 44 -93 -21 741 -2176 1404 11676 -47312 62292 158003 -970137 1883355 1375184 -18691429
AltTransNat0 k=0..n T(n, k) kmissing0 -1 4 -9 14 -18 26 -45 70 -90 128 -234 372 -432 582 -1269 2118 -1890 2120 -7470 13636 -5868 404
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -4 10 -18 26 -36 56 -90 130 -180 284 -468 660 -864 1428 -2538 3378 -3780 7100 -14940 17548 -11736
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 6 -19 40 -62 82 -119 200 -310 412 -590 1032 -1632 2010 -2751 5496 -9102 9220 -10970 31184
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -5 17 -45 121 -405 1345 -3645 9545 -32805 114577 -295245 687129 -2657205 10509537 -23914845
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
AltDiagRow2T(n + 2, n)A0014773 -2 1 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28
AltDiagRow3T(n + 3, n)A005843-4 2 0 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 28 -30 32 -34 36 -38 40 -42 44 -46 48 -50 52 -54
AltDiagCol1T(n + 1, 1)missing-1 2 -2 2 -5 10 -10 8 -26 60 -48 6 -141 426 -210 -400 -830 3676 -652 -7420 -5666 37892 1948 -106928
AltDiagCol2T(n + 2, 2)missing1 -2 1 0 5 -12 4 8 30 -90 3 144 213 -820 -200 2016 1838 -8724 -3710 26560 18946 -103032 -53464
AltDiagCol3T(n + 3, 3)missing-1 2 0 -2 -6 16 4 -30 -45 150 72 -394 -410 1616 1008 -5048 -4362 19140 13280 -65140 -51516 240712
AltPolysee docsmissing1 -2 1 3 -3 1 -4 6 -4 1 6 -9 11 -5 1 -10 12 -24 18 -6 1 15 -18 46 -55 27 -7 1 -20 30 -84 156 -108
AltPolyRow1 k=0..1 T(1, k) n^kA000027-2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28
AltPolyRow2 k=0..2 T(2, k) n^kA0591003 6 11 18 27 38 51 66 83 102 123 146 171 198 227 258 291 326 363 402 443 486 531 578 627 678 731
AltPolyRow3 k=0..3 T(3, k) n^kmissing-4 -9 -24 -55 -108 -189 -304 -459 -660 -913 -1224 -1599 -2044 -2565 -3168 -3859 -4644 -5529 -6520
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -4 11 -24 46 -84 151 -264 446 -744 1246 -2064 3336 -5364 8751 -14184 22326 -35064 56746 -91344
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -5 18 -55 156 -430 1170 -3155 8460 -22630 60468 -161430 430704 -1148880 3064338 -8172555 21794460
AltPolyDiag k=0..n T(n, k) n^kmissing1 -3 11 -55 414 -4410 60735 -1018359 20029790 -450921130 11417823678 -320921494374 9909329125896
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 -2 1 -2 3 1 -2 2 -4 1 -2 1 -2 6 1 -2 0 0 5 -10 1 -2 -1 2 5 -10 15 1 -2 -2 4 6 -12 10 -20 1 -2
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1240381 2 1 1 2 1 2 2 2 1 1 4 3 2 1 2 3 6 4 2 1 1 6 6 8 5 2 1 2 4 12 10 10 6 2 1 1 8 10 20 15 12 7 2 1 2
RevAccsee docsmissing1 1 -1 1 -1 2 1 -1 1 -3 1 -1 0 -2 4 1 -1 -1 -1 4 -6 1 -1 -2 0 5 -5 10 1 -1 -3 1 7 -5 5 -15 1 -1 -4
RevAccRevsee docsmissing1 -2 -1 3 1 2 -4 -2 -4 -3 6 4 5 3 4 -10 -5 -5 -5 -7 -6 15 5 10 12 11 9 10 -20 -10 -22 -16 -12 -14
RevAntiDiagsee docsmissing1 1 1 -2 1 -2 1 -2 3 1 -2 2 1 -2 1 -4 1 -2 0 -2 1 -2 -1 0 6 1 -2 -2 2 5 1 -2 -3 4 5 -10 1 -2 -4 6 6
RevDiffx1T(n, k) (k+1)missing1 1 -4 1 -4 9 1 -4 6 -16 1 -4 3 -8 30 1 -4 0 0 25 -60 1 -4 -3 8 25 -60 105 1 -4 -6 16 30 -72 70
RevRowSum k=0..n T(n, k)A0869901 -1 2 -3 4 -6 10 -15 20 -30 52 -78 96 -144 282 -423 420 -630 1660 -2490 1304 -1956 11332 -16998
RevEvenSum k=0..n T(n, k) even(k)missing1 1 4 3 8 6 20 15 40 30 104 78 192 144 564 423 840 630 3320 2490 2608 1956 22664 16998 -7792 -5844
RevOddSum k=0..n T(n, k) odd(k)missing0 -2 -2 -6 -4 -12 -10 -30 -20 -60 -52 -156 -96 -288 -282 -846 -420 -1260 -1660 -4980 -1304 -3912
RevAltSum k=0..n T(n, k) (-1)^kA3750261 3 6 9 12 18 30 45 60 90 156 234 288 432 846 1269 1260 1890 4980 7470 3912 5868 33996 50994 -11688
RevAbsSum k=0..n | T(n, k) |missing1 3 6 9 12 18 36 57 78 138 276 450 630 1368 2736 4617 7974 16578 33156 57774 111636 225228 450456
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 -1 -1 2 1 -4 -3 4 4 -5 -3 13 8 -19 -17 15 14 -29 -14 76 53 -89 -87 52 45 -156 -64 455 329 -453
RevAccSum k=0..n j=0..k T(n, j)missing1 0 2 -2 2 -4 8 -10 10 -20 44 -52 36 -96 276 -282 -6 -420 2060 -1660 -2372 -1304 18752 -11332
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 -3 6 -13 22 -38 72 -125 190 -310 580 -962 1308 -2064 4236 -6909 7566 -11550 31140 -50630 31060
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 6 4 6 10 30 60 240 1144 780 1440 327600 176814000 3543072957846 531150900 37992200400
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |missing1 2 3 4 6 10 15 20 30 52 78 96 150 282 426 820 1616 3032 5368 10416 19440 38580 72540 137680 266698
RevColMiddleT(n, n // 2)missing1 1 -2 -2 1 0 2 4 8 11 -30 -40 -50 -76 218 300 460 660 -1840 -2502 -3999 -5664 15678 21268 35396
RevCentralET(2 n, n)missing1 -2 1 2 8 -30 -50 218 460 -1840 -3999 15678 35396 -136340 -315300 1200330 2827260 -10668888
RevCentralOT(2 n + 1, n)missing1 -2 0 4 11 -40 -76 300 660 -2502 -5664 21268 49570 -184480 -438300 1621260 3908556 -14389960
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0869901 -2 3 -4 6 -10 15 -20 30 -52 78 -96 144 -282 423 -420 630 -1660 2490 -1304 1956 -11332 16998 3896
RevBinConv k=0..n C(n, k) T(n, k)missing1 -1 0 -3 -3 6 44 93 -21 -741 -2176 -1404 11676 47312 62292 -158003 -970137 -1883355 1375184
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -3 8 -17 29 -46 108 -385 1259 -3023 4584 -2132 -4324 -22032 215924 -769617 1378151 139439
RevTransNat0 k=0..n T(n, k) kmissing0 -2 4 -10 18 -32 62 -110 170 -280 528 -884 1212 -1920 3954 -6486 7146 -10920 29480 -48140 29756
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 -3 6 -13 22 -38 72 -125 190 -310 580 -962 1308 -2064 4236 -6909 7566 -11550 31140 -50630 31060
RevTransSqrs k=0..n T(n, k) k^2missing0 -2 10 -30 80 -172 382 -798 1440 -2620 5348 -9964 15272 -25680 55350 -99006 121296 -190284 522620
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA1269821 0 3 0 6 0 15 0 30 0 78 0 144 0 423 0 630 0 2490 0 1956 0 16998 0 -5844 0 142860 0 -235740 0
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -4 11 -24 46 -84 151 -264 446 -744 1246 -2064 3336 -5364 8751 -14184 22326 -35064 56746 -91344
RevDiagRow1T(n + 1, n)missing1 -2 2 -2 5 -10 10 -8 26 -60 48 -6 141 -426 210 400 830 -3676 652 7420 5666 -37892 -1948 106928
RevDiagRow2T(n + 2, n)missing1 -2 1 0 5 -12 4 8 30 -90 3 144 213 -820 -200 2016 1838 -8724 -3710 26560 18946 -103032 -53464
RevDiagRow3T(n + 3, n)missing1 -2 0 2 6 -16 -4 30 45 -150 -72 394 410 -1616 -1008 5048 4362 -19140 -13280 65140 51516 -240712
RevDiagCol1T(n + 1, 1)A055642-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
RevDiagCol2T(n + 2, 2)A0014773 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25
RevDiagCol3T(n + 3, 3)A005843-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
RevPolysee docsmissing1 1 1 1 -1 1 1 2 -3 1 1 -3 9 -5 1 1 4 -27 22 -7 1 1 -6 81 -95 41 -9 1 1 10 -243 436 -231 66 -11 1 1
RevPolyRow1 k=0..1 T(1, k) n^kA0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
RevPolyRow2 k=0..2 T(2, k) n^kA0561051 2 9 22 41 66 97 134 177 226 281 342 409 482 561 646 737 834 937 1046 1161 1282 1409 1542 1681
RevPolyRow3 k=0..3 T(3, k) n^kmissing1 -3 -27 -95 -231 -459 -803 -1287 -1935 -2771 -3819 -5103 -6647 -8475 -10611 -13079 -15903 -19107
RevPolyCol2 k=0..n T(n, k) 2^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 -5 22 -95 436 -2030 8950 -38795 179140 -842630 3670492 -15546470 73353424 -357244880 1509161782
RevPolyDiag k=0..n T(n, k) n^kmissing1 -1 9 -95 1417 -28134 628945 -15480387 487099185 -18991734110 723282159481 -26346383190918
InvTriangleT(n, k), 0 ≤ k ≤ nA1240381 2 1 1 2 1 2 2 2 1 1 4 3 2 1 2 3 6 4 2 1 1 6 6 8 5 2 1 2 4 12 10 10 6 2 1 1 8 10 20 15 12 7 2 1 2
InvRevT(n, n - k), 0 ≤ k ≤ nA3744391 1 2 1 2 1 1 2 2 2 1 2 3 4 1 1 2 4 6 3 2 1 2 5 8 6 6 1 1 2 6 10 10 12 4 2 1 2 7 12 15 20 10 8 1 1
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -2 1 -2 3 1 -2 2 -4 1 -2 1 -2 6 1 -2 0 0 5 -10 1 -2 -1 2 5 -10 15 1 -2 -2 4 6 -12 10 -20 1 -2
InvAccsee docsmissing1 2 3 1 3 4 2 4 6 7 1 5 8 10 11 2 5 11 15 17 18 1 7 13 21 26 28 29 2 6 18 28 38 44 46 47 1 9 19 39
InvAccRevsee docsmissing1 1 3 1 3 4 1 3 5 7 1 3 6 10 11 1 3 7 13 16 18 1 3 8 16 22 28 29 1 3 9 19 29 41 45 47 1 3 10 22 37
InvAntiDiagsee docsmissing1 2 1 1 2 2 1 2 1 2 4 2 1 3 3 1 2 6 6 2 1 4 6 4 1 2 8 12 8 2 1 5 10 10 5 1 2 10 20 20 10 2 1 6 15
InvDiffx1T(n, k) (k+1)missing1 2 2 1 4 3 2 4 6 4 1 8 9 8 5 2 6 18 16 10 6 1 12 18 32 25 12 7 2 8 36 40 50 36 14 8 1 16 30 80 75
InvRowSum k=0..n T(n, k)A0000321 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 15127 24476 39603 64079 103682
InvEvenSum k=0..n T(n, k) even(k)A1335851 2 2 4 5 10 13 26 34 68 89 178 233 466 610 1220 1597 3194 4181 8362 10946 21892 28657 57314 75025
InvOddSum k=0..n T(n, k) odd(k)A1335860 1 2 3 6 8 16 21 42 55 110 144 288 377 754 987 1974 2584 5168 6765 13530 17711 35422 46368 92736
InvAltSum k=0..n T(n, k) (-1)^kA0000451 1 0 1 -1 2 -3 5 -8 13 -21 34 -55 89 -144 233 -377 610 -987 1597 -2584 4181 -6765 10946 -17711
InvAbsSum k=0..n | T(n, k) |A0000321 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 15127 24476 39603 64079 103682
InvDiagSum k=0..n // 2 T(n - k, k)A0161161 2 2 4 4 8 8 16 16 32 32 64 64 128 128 256 256 512 512 1024 1024 2048 2048 4096 4096 8192 8192
InvAccSum k=0..n j=0..k T(n, j)missing1 5 8 19 35 68 125 229 412 735 1299 2280 3977 6901 11920 20507 35155 60076 102373 174005 295076
InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 4 8 16 31 58 107 194 348 618 1089 1906 3317 5744 9904 17012 29123 49706 84607 143662 243396
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 2 2 12 12 120 60 840 840 5040 2520 55440 27720 720720 360360 720720 720720 24504480 12252240
InvRowGcdGcd k=0..n | T(n, k) | > 1A2973821 2 2 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |missing1 2 2 2 4 6 8 12 20 30 42 70 112 168 252 420 660 990 1584 2574 4004 6006 10010 16016 24752 38896
InvColMiddleT(n, n // 2)missing1 2 2 2 3 6 8 10 15 30 42 56 84 168 240 330 495 990 1430 2002 3003 6006 8736 12376 18564 37128
InvCentralET(2 n, n)missing1 2 3 8 15 42 84 240 495 1430 3003 8736 18564 54264 116280 341088 735471 2163150 4686825 13813800
InvCentralOT(2 n + 1, n)missing2 2 6 10 30 56 168 330 990 2002 6006 12376 37128 77520 232560 490314 1470942 3124550 9373650
InvColLeftT(n, 0)A0000341 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)missing1 3 6 15 44 128 375 1123 3400 10356 31736 97760 302351 938265 2920182 9111455 28491504 89264640
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 -2 -1 -4 -16 -41 -113 -344 -1036 -3112 -9472 -29041 -89363 -276082 -856081 -2662352 -8300608
InvTransNat0 k=0..n T(n, k) kA0236070 1 4 9 20 40 78 147 272 495 890 1584 2796 4901 8540 14805 25552 43928 75258 128535 218920 371931
InvTransNat1 k=0..n T(n, k) (k + 1)missing1 4 8 16 31 58 107 194 348 618 1089 1906 3317 5744 9904 17012 29123 49706 84607 143662 243396
InvTransSqrs k=0..n T(n, k) k^2missing0 1 6 19 50 120 268 573 1182 2375 4670 9024 17184 32321 60150 110915 202882 368472 664988 1193325
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0061311 5 9 29 65 181 441 1165 2929 7589 19305 49661 126881 325525 833049 2135149 5467345 14007941
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -3 1 -11 -7 -51 -79 -283 -599 -1731 -4127 -11051 -27559 -71763 -181999 -469051 -1197047 -3073251
InvDiagRow1T(n + 1, n)A0556422 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
InvDiagRow2T(n + 2, n)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
InvDiagRow3T(n + 3, n)A0058432 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
InvDiagCol1T(n + 1, 1)A0295781 2 2 4 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19
InvDiagCol2T(n + 2, 2)A1312591 2 3 6 6 12 10 20 15 30 21 42 28 56 36 72 45 90 55 110 66 132 78 156 91 182 105 210 120 240 136
InvDiagCol3T(n + 3, 3)missing1 2 4 8 10 20 20 40 35 70 56 112 84 168 120 240 165 330 220 440 286 572 364 728 455 910 560 1120
InvPolysee docsmissing1 2 1 1 3 1 2 4 4 1 1 7 9 5 1 2 11 22 16 6 1 1 18 53 53 25 7 1 2 29 128 175 106 36 8 1 1 47 309 578
InvPolyRow1 k=0..1 T(1, k) n^kA0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
InvPolyRow2 k=0..2 T(2, k) n^kA0002901 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784
InvPolyRow3 k=0..3 T(3, k) n^kA1883772 7 22 53 106 187 302 457 658 911 1222 1597 2042 2563 3166 3857 4642 5527 6518 7621 8842 10187
InvPolyCol2 k=0..n T(n, k) 2^kA0486541 4 9 22 53 128 309 746 1801 4348 10497 25342 61181 147704 356589 860882 2078353 5017588 12113529
InvPolyCol3 k=0..n T(n, k) 3^kA1083001 5 16 53 175 578 1909 6305 20824 68777 227155 750242 2477881 8183885 27029536 89272493 294847015
InvPolyDiag k=0..n T(n, k) n^kmissing1 3 9 53 449 5042 70669 1187741 23272129 520670963 13092591601 365435296162 11208613137121
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA3744391 1 2 1 2 1 1 2 2 2 1 2 3 4 1 1 2 4 6 3 2 1 2 5 8 6 6 1 1 2 6 10 10 12 4 2 1 2 7 12 15 20 10 8 1 1
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA1240381 2 1 1 2 1 2 2 2 1 1 4 3 2 1 2 3 6 4 2 1 1 6 6 8 5 2 1 2 4 12 10 10 6 2 1 1 8 10 20 15 12 7 2 1 2
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA3750251 -2 1 3 -2 1 -4 2 -2 1 6 -2 1 -2 1 -10 5 0 0 -2 1 15 -10 5 2 -1 -2 1 -20 10 -12 6 4 -2 -2 1 30 -8
Inv:RevAccsee docsmissing1 1 3 1 3 4 1 3 5 7 1 3 6 10 11 1 3 7 13 16 18 1 3 8 16 22 28 29 1 3 9 19 29 41 45 47 1 3 10 22 37
Inv:RevAccRevsee docsmissing1 2 3 1 3 4 2 4 6 7 1 5 8 10 11 2 5 11 15 17 18 1 7 13 21 26 28 29 2 6 18 28 38 44 46 47 1 9 19 39
Inv:RevAntiDiagsee docsmissing1 1 1 2 1 2 1 2 1 1 2 2 1 2 3 2 1 2 4 4 1 2 5 6 1 1 2 6 8 3 1 2 7 10 6 2 1 2 8 12 10 6 1 2 9 14 15
Inv:RevDiffx1T(n, k) (k+1)missing1 1 4 1 4 3 1 4 6 8 1 4 9 16 5 1 4 12 24 15 12 1 4 15 32 30 36 7 1 4 18 40 50 72 28 16 1 4 21 48 75
Inv:RevRowSum k=0..n T(n, k)A0000321 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 15127 24476 39603 64079 103682
Inv:RevEvenSum k=0..n T(n, k) even(k)A0000451 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025
Inv:RevOddSum k=0..n T(n, k) odd(k)A0063550 2 2 4 6 10 16 26 42 68 110 178 288 466 754 1220 1974 3194 5168 8362 13530 21892 35422 57314 92736
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0000451 -1 0 -1 -1 -2 -3 -5 -8 -13 -21 -34 -55 -89 -144 -233 -377 -610 -987 -1597 -2584 -4181 -6765
Inv:RevAbsSum k=0..n | T(n, k) |A0000321 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 15127 24476 39603 64079 103682
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 3 3 4 5 8 11 15 20 28 39 54 74 102 141 195 269 371 512 707 976 1347 1859 2566 3542 4889 6748
Inv:RevAccSum k=0..n j=0..k T(n, j)missing1 4 8 16 31 58 107 194 348 618 1089 1906 3317 5744 9904 17012 29123 49706 84607 143662 243396
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 5 8 19 35 68 125 229 412 735 1299 2280 3977 6901 11920 20507 35155 60076 102373 174005 295076
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 2 2 12 12 120 60 840 840 5040 2520 55440 27720 720720 360360 720720 720720 24504480 12252240
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A2973821 2 2 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |missing1 2 2 2 4 6 8 12 20 30 42 70 112 168 252 420 660 990 1584 2574 4004 6006 10010 16016 24752 38896
Inv:RevColMiddleT(n, n // 2)missing1 1 2 2 3 4 8 10 15 21 42 56 84 120 240 330 495 715 1430 2002 3003 4368 8736 12376 18564 27132
Inv:RevCentralET(2 n, n)missing1 2 3 8 15 42 84 240 495 1430 3003 8736 18564 54264 116280 341088 735471 2163150 4686825 13813800
Inv:RevCentralOT(2 n + 1, n)missing1 2 4 10 21 56 120 330 715 2002 4368 12376 27132 77520 170544 490314 1081575 3124550 6906900
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000341 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Inv:RevBinConv k=0..n C(n, k) T(n, k)missing1 3 6 15 44 128 375 1123 3400 10356 31736 97760 302351 938265 2920182 9111455 28491504 89264640
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 -2 1 -4 16 -41 113 -344 1036 -3112 9472 -29041 89363 -276082 856081 -2662352 8300608 -25937564
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 2 4 12 24 50 96 182 336 612 1100 1958 3456 6058 10556 18300 31584 54298 93024 158878 270600
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 5 8 19 35 68 125 229 412 735 1299 2280 3977 6901 11920 20507 35155 60076 102373 174005 295076
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 2 6 28 66 170 376 818 1694 3428 6770 13138 25104 47362 88374 163340 299394 544762 984776 1769842
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0486541 4 9 22 53 128 309 746 1801 4348 10497 25342 61181 147704 356589 860882 2078353 5017588 12113529
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0001291 0 1 -2 5 -12 29 -70 169 -408 985 -2378 5741 -13860 33461 -80782 195025 -470832 1136689 -2744210
Inv:RevDiagRow1T(n + 1, n)A0295781 2 2 4 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19
Inv:RevDiagRow2T(n + 2, n)A1312591 2 3 6 6 12 10 20 15 30 21 42 28 56 36 72 45 90 55 110 66 132 78 156 91 182 105 210 120 240 136
Inv:RevDiagRow3T(n + 3, n)missing1 2 4 8 10 20 20 40 35 70 56 112 84 168 120 240 165 330 220 440 286 572 364 728 455 910 560 1120
Inv:RevDiagCol1T(n + 1, 1)A0556422 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Inv:RevDiagCol2T(n + 2, 2)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Inv:RevDiagCol3T(n + 3, 3)A0058432 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
Inv:RevPolysee docsmissing1 1 1 1 3 1 1 4 5 1 1 7 9 7 1 1 11 29 16 9 1 1 18 65 79 25 11 1 1 29 181 223 169 36 13 1 1 47 441
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0002901 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784
Inv:RevPolyRow3 k=0..3 T(3, k) n^kmissing1 7 29 79 169 311 517 799 1169 1639 2221 2927 3769 4759 5909 7231 8737 10439 12349 14479 16841
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0061311 5 9 29 65 181 441 1165 2929 7589 19305 49661 126881 325525 833049 2135149 5467345 14007941
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 7 16 79 223 934 2941 11347 37816 139939 480283 1739734 6062281 21719887 76280416 271759399
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 3 9 79 569 8986 103009 2347115 36899281 1098282907 21939496921 805961760902 19528031758921
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.