EULERIANZIGZAG[0] 1
[1] 1, 0
[2] 1, 0, 0
[3] 1, 1, 0, 0
[4] 1, 3, 1, 0, 0
[5] 1, 7, 7, 1, 0, 0

      OEIS Similars: A205497

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 0 0 1 1 0 0 1 3 1 0 0 1 7 7 1 0 0 1 14 31 14 1 0 0 1 26 109 109 26 1 0 0 1 46 334 623 334
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 1 1 0 0 1 3 1 0 0 1 7 7 1 0 0 1 14 31 14 1 0 0 1 26 109 109 26 1 0 0 1 46 334 623
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 -1 1 0 0 2 -3 1 0 0 -8 14 -7 1 0 0 63 -117 67 -14 1 0 0 -959 1817 -1088 255 -26 1 0
StdAccsee docsmissing1 1 1 1 1 1 1 2 2 2 1 4 5 5 5 1 8 15 16 16 16 1 15 46 60 61 61 61 1 27 136 245 271 272 272 272 1 47
StdAccRevsee docsmissing1 0 1 0 0 1 0 0 1 2 0 0 1 4 5 0 0 1 8 15 16 0 0 1 15 46 60 61 0 0 1 27 136 245 271 272 0 0 1 47 381
StdAntiDiagsee docsmissing1 1 1 0 1 0 1 1 0 1 3 0 1 7 1 0 1 14 7 0 1 26 31 1 0 1 46 109 14 0 1 79 334 109 1 0 1 133 937 623
StdDiffx1T(n, k) (k+1)missing1 1 0 1 0 0 1 2 0 0 1 6 3 0 0 1 14 21 4 0 0 1 28 93 56 5 0 0 1 52 327 436 130 6 0 0 1 92 1002 2492
StdRowSum k=0..n T(n, k)A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdEvenSum k=0..n T(n, k) even(k)A3737521 1 1 1 2 8 33 136 670 3968 25593 176896 1344154 11184128 99897361 951878656 9687175862
StdOddSum k=0..n T(n, k) odd(k)A3737530 0 0 1 3 8 28 136 715 3968 24928 176896 1358611 11184128 99463620 951878656 9704336283
StdAltSum k=0..n T(n, k) (-1)^kA3733881 1 1 0 -1 0 5 0 -45 0 665 0 -14457 0 433741 0 -17160421 0 865407905 0 -54179057649 0 4122477869077
StdAbsSum k=0..n | T(n, k) |A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 1 2 4 9 22 59 170 524 1720 5983 21960 84760 342991 1451215 6404610 29419285 140381255
StdAccSum k=0..n j=0..k T(n, j)missing1 2 3 7 20 72 305 1496 8310 51584 353647 2653440 21622120 190130176 1794248829 18085694464
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 1 3 10 40 183 952 5540 35712 252605 1945856 16216590 145393664 1395526867 14278179840
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 3 7 434 2834 4785886 218441873 400875569325 157909434654192 581712145283555454168
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A3737551 1 1 1 3 7 31 109 623 2951 20641 123216 1019051 7349140 70148989 593513485 6421463423 62382094567
StdColMiddleT(n, n // 2)missing1 1 0 1 1 7 14 109 334 2951 12331 123216 656683 7349140 47816612 593513485 4571277561 62382094567
StdCentralET(2 n, n)missing1 0 1 14 334 12331 656683 47816612 4571277561 555922552167 83863211756260 15374550850779455
StdCentralOT(2 n + 1, n)missing1 1 7 109 2951 123216 7349140 593513485 62382094567 8277393686747 1353422057172923
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 1 4 19 116 845 7218 70593 778888 9570203 129627576 1919090549 30832938774 534324128011
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 1 2 -5 -26 117 818 -5071 -45502 361359 3938230 -38153115 -489115342 5594336531 82466571570
StdTransNat0 k=0..n T(n, k) kA0063260 0 0 1 5 24 122 680 4155 27776 202084 1592064 13513825 123025408 1196165886 12374422528
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 1 1 3 10 40 183 952 5540 35712 252605 1945856 16216590 145393664 1395526867 14278179840
StdTransSqrs k=0..n T(n, k) k^2missing0 0 0 1 7 44 280 1884 13519 103920 855224 7522048 70526591 702971904 7428223616 82990729728
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 4 12 44 204 1124 7236 53172 439596 4037372 40787580 449500596 5366500164 68997666868
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 4 -4 -4 28 4 -412 788 8572 -46868 -200980 2802164 1781188 -186717452 582840140 13466024492
StdDiagRow1T(n + 1, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow2T(n + 2, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagRow3T(n + 3, n)A0019241 3 7 14 26 46 79 133 221 364 596 972 1581 2567 4163 6746 10926 17690 28635 46345 75001 121368
StdDiagCol1T(n + 1, 1)A0019240 0 1 3 7 14 26 46 79 133 221 364 596 972 1581 2567 4163 6746 10926 17690 28635 46345 75001 121368
StdDiagCol2T(n + 2, 2)A2054920 0 1 7 31 109 334 937 2475 6267 15393 36976 87369 203915 471546 1082849 2473535 5627684 12765052
StdDiagCol3T(n + 3, 3)A2054930 0 1 14 109 623 2951 12331 47191 169416 579889 1914226 6144668 19298724 59579803 181448918
StdPolysee docsmissing1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 3 1 1 1 1 16 11 4 1 1 1 1 61 51 19 5 1 1 1 1 272 281 112 29 6 1 1
StdPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdPolyRow2 k=0..2 T(2, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdPolyRow3 k=0..3 T(3, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyCol2 k=0..n T(n, k) 2^kA3503541 1 1 3 11 51 281 1809 13293 109899 1009343 10196895 112375149 1341625041 17249416717 237618939975
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 1 1 4 19 112 781 6352 58927 614848 7125673 90831040 1262986411 19024525312 308608966117
StdPolyDiag k=0..n T(n, k) n^kmissing1 1 1 4 29 336 5521 122144 3478257 123685120 5357089831 277170733632 16857596623009
AltTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 0 0 1 -1 0 0 1 -3 1 0 0 1 -7 7 -1 0 0 1 -14 31 -14 1 0 0 1 -26 109 -109 26 -1 0 0 1 -46 334
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 -1 1 0 0 1 -3 1 0 0 -1 7 -7 1 0 0 1 -14 31 -14 1 0 0 -1 26 -109 109 -26 1 0 0 1 -46
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 1 1 0 0 2 3 1 0 0 8 14 7 1 0 0 63 117 67 14 1 0 0 959 1817 1088 255 26 1 0 0 27433
AltAccsee docsmissing1 1 1 1 1 1 1 0 0 0 1 -2 -1 -1 -1 1 -6 1 0 0 0 1 -13 18 4 5 5 5 1 -25 84 -25 1 0 0 0 1 -45 289 -334
AltAccRevsee docsmissing1 0 1 0 0 1 0 0 -1 0 0 0 1 -2 -1 0 0 -1 6 -1 0 0 0 1 -13 18 4 5 0 0 -1 25 -84 25 -1 0 0 0 1 -45 289
AltAntiDiagsee docsmissing1 1 1 0 1 0 1 -1 0 1 -3 0 1 -7 1 0 1 -14 7 0 1 -26 31 -1 0 1 -46 109 -14 0 1 -79 334 -109 1 0 1
AltDiffx1T(n, k) (k+1)missing1 1 0 1 0 0 1 -2 0 0 1 -6 3 0 0 1 -14 21 -4 0 0 1 -28 93 -56 5 0 0 1 -52 327 -436 130 -6 0 0 1 -92
AltRowSum k=0..n T(n, k)A3733881 1 1 0 -1 0 5 0 -45 0 665 0 -14457 0 433741 0 -17160421 0 865407905 0 -54179057649 0 4122477869077
AltEvenSum k=0..n T(n, k) even(k)A3737521 1 1 1 2 8 33 136 670 3968 25593 176896 1344154 11184128 99897361 951878656 9687175862
AltOddSum k=0..n T(n, k) odd(k)A3737530 0 0 -1 -3 -8 -28 -136 -715 -3968 -24928 -176896 -1358611 -11184128 -99463620 -951878656
AltAltSum k=0..n T(n, k) (-1)^kA0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
AltAbsSum k=0..n | T(n, k) |A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
AltDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 1 0 -2 -5 -6 5 50 148 208 -363 -3522 -12688 -22447 41841 532656 2410809 5798259 -5688975
AltAccSum k=0..n j=0..k T(n, j)missing1 2 3 1 -4 -4 25 36 -270 -528 4655 11440 -115656 -342528 3903669 13534016 -171604210 -681920256
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 1 -1 -2 4 15 -36 -180 528 3325 -11440 -86742 342528 3036187 -13534016 -137283368 681920256
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 3 7 434 2834 4785886 218441873 400875569325 157909434654192 581712145283555454168
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A3737551 1 1 1 3 7 31 109 623 2951 20641 123216 1019051 7349140 70148989 593513485 6421463423 62382094567
AltColMiddleT(n, n // 2)missing1 1 0 -1 1 7 -14 -109 334 2951 -12331 -123216 656683 7349140 -47816612 -593513485 4571277561
AltCentralET(2 n, n)missing1 0 1 -14 334 -12331 656683 -47816612 4571277561 -555922552167 83863211756260 -15374550850779455
AltCentralOT(2 n + 1, n)missing1 -1 7 -109 2951 -123216 7349140 -593513485 62382094567 -8277393686747 1353422057172923
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 1 1 -2 -5 26 117 -818 -5071 45502 361359 -3938230 -38153115 489115342 5594336531 -82466571570
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 1 -4 19 -116 845 -7218 70593 -778888 9570203 -129627576 1919090549 -30832938774 534324128011
AltTransNat0 k=0..n T(n, k) kmissing0 0 0 -1 -1 4 10 -36 -135 528 2660 -11440 -72285 342528 2602446 -13534016 -120122947 681920256
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 1 1 -1 -2 4 15 -36 -180 528 3325 -11440 -86742 342528 3036187 -13534016 -137283368 681920256
AltTransSqrs k=0..n T(n, k) k^2missing0 0 0 -1 1 12 0 -180 -87 3696 3416 -102960 -137911 3767808 6567192 -175942208 -376454399
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 4 4 -4 -28 4 412 788 -8572 -46868 200980 2802164 -1781188 -186717452 -582840140 13466024492
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 4 -12 44 -204 1124 -7236 53172 -439596 4037372 -40787580 449500596 -5366500164 68997666868
AltDiagRow1T(n + 1, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow3T(n + 3, n)A0019241 -3 7 -14 26 -46 79 -133 221 -364 596 -972 1581 -2567 4163 -6746 10926 -17690 28635 -46345 75001
AltDiagCol1T(n + 1, 1)A0019240 0 -1 -3 -7 -14 -26 -46 -79 -133 -221 -364 -596 -972 -1581 -2567 -4163 -6746 -10926 -17690 -28635
AltDiagCol2T(n + 2, 2)A2054920 0 1 7 31 109 334 937 2475 6267 15393 36976 87369 203915 471546 1082849 2473535 5627684 12765052
AltDiagCol3T(n + 3, 3)A2054930 0 -1 -14 -109 -623 -2951 -12331 -47191 -169416 -579889 -1914226 -6144668 -19298724 -59579803
AltPolysee docsmissing1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 -1 -1 1 1 1 1 0 -1 -2 1 1 1 1 5 7 1 -3 1 1 1 1 0 1 16 5 -4 1 1 1 1
AltPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltPolyRow2 k=0..2 T(2, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltPolyRow3 k=0..3 T(3, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyCol2 k=0..n T(n, k) 2^kA3733891 1 1 -1 -1 7 1 -103 197 2143 -11717 -50245 700541 445297 -46679363 145710035 3366506123
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 1 1 -2 1 16 -59 -176 2653 -4736 -115607 947200 3222169 -107884544 417063277 10152663040
AltPolyDiag k=0..n T(n, k) n^kmissing1 1 1 -2 5 16 -695 13392 -175087 -842624 206225171 -11611110400 452582851201 -7767342065664
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 1 1 0 0 1 3 1 0 0 1 7 7 1 0 0 1 14 31 14 1 0 0 1 26 109 109 26 1 0 0 1 46 334 623
RevInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 -1 1 0 0 2 -3 1 0 0 -8 14 -7 1 0 0 63 -117 67 -14 1 0 0 -959 1817 -1088 255 -26 1 0
RevRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 0 0 1 -1 0 0 1 -3 2 0 0 1 -7 14 -8 0 0 1 -14 67 -117 63 0 0 1 -26 255 -1088 1817 -959 0 0 1
RevAccsee docsmissing1 0 1 0 0 1 0 0 1 2 0 0 1 4 5 0 0 1 8 15 16 0 0 1 15 46 60 61 0 0 1 27 136 245 271 272 0 0 1 47 381
RevAccRevsee docsmissing1 1 1 1 1 1 1 2 2 2 1 4 5 5 5 1 8 15 16 16 16 1 15 46 60 61 61 61 1 27 136 245 271 272 272 272 1 47
RevAntiDiagsee docsmissing1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 3 0 0 1 7 1 0 0 1 14 7 0 0 1 26 31 1 0 0 1 46 109 14 0 0 1 79
RevDiffx1T(n, k) (k+1)missing1 0 2 0 0 3 0 0 3 4 0 0 3 12 5 0 0 3 28 35 6 0 0 3 56 155 84 7 0 0 3 104 545 654 182 8 0 0 3 184
RevRowSum k=0..n T(n, k)A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevEvenSum k=0..n T(n, k) even(k)A3737521 0 1 1 2 8 33 136 670 3968 25593 176896 1344154 11184128 99897361 951878656 9687175862
RevOddSum k=0..n T(n, k) odd(k)A3737530 1 0 1 3 8 28 136 715 3968 24928 176896 1358611 11184128 99463620 951878656 9704336283
RevAltSum k=0..n T(n, k) (-1)^kA3733881 -1 1 0 -1 0 5 0 -45 0 665 0 -14457 0 433741 0 -17160421 0 865407905 0 -54179057649 0
RevAbsSum k=0..n | T(n, k) |A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 0 1 1 2 4 9 22 59 170 524 1720 5983 21960 84760 342991 1451215 6404610 29419285 140381255
RevAccSum k=0..n j=0..k T(n, j)missing1 1 1 3 10 40 183 952 5540 35712 252605 1945856 16216590 145393664 1395526867 14278179840
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 3 7 20 72 305 1496 8310 51584 353647 2653440 21622120 190130176 1794248829 18085694464
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 3 7 434 2834 4785886 218441873 400875569325 157909434654192 581712145283555454168
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A3737551 1 1 1 3 7 31 109 623 2951 20641 123216 1019051 7349140 70148989 593513485 6421463423 62382094567
RevColMiddleT(n, n // 2)missing1 0 0 0 1 1 14 26 334 937 12331 47191 656683 3217526 47816612 287357460 4571277561 32672880245
RevCentralET(2 n, n)missing1 0 1 14 334 12331 656683 47816612 4571277561 555922552167 83863211756260 15374550850779455
RevCentralOT(2 n + 1, n)missing0 0 1 26 937 47191 3217526 287357460 32672880245 4617894868004 795257854725153 164080804716367957
RevColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 1 4 19 116 845 7218 70593 778888 9570203 129627576 1919090549 30832938774 534324128011
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 1 -2 -5 26 117 -818 -5071 45502 361359 -3938230 -38153115 489115342 5594336531 -82466571570
RevTransNat0 k=0..n T(n, k) kmissing0 1 2 5 15 56 244 1224 6925 43648 303126 2299648 18919355 167761920 1594887848 16181937152
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 2 3 7 20 72 305 1496 8310 51584 353647 2653440 21622120 190130176 1794248829 18085694464
RevTransSqrs k=0..n T(n, k) k^2missing0 1 4 13 47 204 1012 5692 35679 246768 1865644 15305472 135392951 1284546560 13010331084
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA3503541 1 1 3 11 51 281 1809 13293 109899 1009343 10196895 112375149 1341625041 17249416717 237618939975
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3733891 1 1 -1 -1 7 1 -103 197 2143 -11717 -50245 700541 445297 -46679363 145710035 3366506123
RevDiagRow1T(n + 1, n)A0019240 0 1 3 7 14 26 46 79 133 221 364 596 972 1581 2567 4163 6746 10926 17690 28635 46345 75001 121368
RevDiagRow2T(n + 2, n)A2054920 0 1 7 31 109 334 937 2475 6267 15393 36976 87369 203915 471546 1082849 2473535 5627684 12765052
RevDiagRow3T(n + 3, n)A2054930 0 1 14 109 623 2951 12331 47191 169416 579889 1914226 6144668 19298724 59579803 181448918
RevDiagCol1T(n + 1, 1)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol2T(n + 2, 2)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagCol3T(n + 3, 3)A0019241 3 7 14 26 46 79 133 221 364 596 972 1581 2567 4163 6746 10926 17690 28635 46345 75001 121368
RevPolysee docsmissing1 0 1 0 1 1 0 1 2 1 0 2 4 3 1 0 5 12 9 4 1 0 16 44 36 16 5 1 0 61 204 171 80 25 6 1 0 272 1124 1008
RevPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevPolyRow2 k=0..2 T(2, k) n^kA0002900 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
RevPolyRow3 k=0..3 T(3, k) n^kA0113790 2 12 36 80 150 252 392 576 810 1100 1452 1872 2366 2940 3600 4352 5202 6156 7220 8400 9702 11132
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 2 4 12 44 204 1124 7236 53172 439596 4037372 40787580 449500596 5366500164 68997666868
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 3 9 36 171 1008 7029 57168 530343 5533632 64131057 817479360 11366877699 171220727808
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 4 36 464 8400 198756 5985056 222608448 10018494720 535708983100 33537658769472 2427493913713296
Rev:InvTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 -1 1 0 0 2 -3 1 0 0 -8 14 -7 1 0 0 63 -117 67 -14 1 0 0 -959 1817 -1088 255 -26 1 0
Rev:InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 0 0 1 -1 0 0 1 -3 2 0 0 1 -7 14 -8 0 0 1 -14 67 -117 63 0 0 1 -26 255 -1088 1817 -959 0 0 1
Rev:InvInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 0 1 0 0 1 1 0 0 1 3 1 0 0 1 7 7 1 0 0 1 14 31 14 1 0 0 1 26 109 109 26 1 0 0 1 46 334 623
Rev:InvRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 0 0 1 1 0 0 1 3 1 0 0 1 7 7 1 0 0 1 14 31 14 1 0 0 1 26 109 109 26 1 0 0 1 46 334 623 334
Rev:InvAccsee docsmissing1 0 1 0 0 1 0 0 -1 0 0 0 2 -1 0 0 0 -8 6 -1 0 0 0 63 -54 13 -1 0 0 0 -959 858 -230 25 -1 0 0 0
Rev:InvAccRevsee docsmissing1 1 1 1 1 1 1 0 0 0 1 -2 0 0 0 1 -6 8 0 0 0 1 -13 54 -63 0 0 0 1 -25 230 -858 959 0 0 0 1 -45 817
Rev:InvAntiDiagsee docsmissing1 0 0 1 0 0 0 0 1 0 0 -1 0 0 2 1 0 0 -8 -3 0 0 63 14 1 0 0 -959 -117 -7 0 0 27433 1817 67 1 0 0
Rev:InvDiffx1T(n, k) (k+1)missing1 0 2 0 0 3 0 0 -3 4 0 0 6 -12 5 0 0 -24 56 -35 6 0 0 189 -468 335 -84 7 0 0 -2877 7268 -5440 1530
Rev:InvRowSum k=0..n T(n, k)A1159441 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvEvenSum k=0..n T(n, k) even(k)missing1 0 1 -1 3 -15 131 -2073 59993 -3142095 292451825 -47531498867 13294708391339 -6326027398219011
Rev:InvOddSum k=0..n T(n, k) odd(k)missing0 1 0 1 -3 15 -131 2073 -59993 3142095 -292451825 47531498867 -13294708391339 6326027398219011
Rev:InvAltSum k=0..n T(n, k) (-1)^kmissing1 -1 1 -2 6 -30 262 -4146 119986 -6284190 584903650 -95062997734 26589416782678 -12652054796438022
Rev:InvAbsSum k=0..n | T(n, k) |missing1 1 1 2 6 30 262 4146 119986 6284190 584903650 95062997734 26589416782678 12652054796438022
Rev:InvDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 0 1 -1 3 -11 78 -1083 29318 -1486097 136040065 -21914640191 6099383919092 -2894111184917030
Rev:InvAccSum k=0..n j=0..k T(n, j)missing1 1 1 -1 1 -3 21 -307 8683 -452281 42049747 -6832933219 1911137147075 -909373783073643
Rev:InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 3 1 -1 3 -21 307 -8683 452281 -42049747 6832933219 -1911137147075 909373783073643
Rev:InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 6 56 109746 369689436480 3458920738461805845270 208656921400838181994868709540900
Rev:InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvRowMaxMax k=0..n | T(n, k) |missing1 1 1 1 3 14 117 1817 52270 2733486 254341160 41335203874 11561489287787 5501302850334480
Rev:InvColMiddleT(n, n // 2)missing1 0 0 0 2 -8 -117 1817 31697 -1662604 -37853350 6154289173 199208998807 -94792091963686
Rev:InvCentralET(2 n, n)missing1 0 2 -117 31697 -37853350 199208998807 -4485286353475037 425956770141307229865
Rev:InvCentralOT(2 n + 1, n)missing0 0 -8 1817 -1662604 6154289173 -94792091963686 6020545287205625832 -1574982076198927709327350
Rev:InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvBinConv k=0..n C(n, k) T(n, k)missing1 1 1 -2 1 26 -473 10550 -346349 15866080 -667602099 -145601649412 151271536132167
Rev:InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 1 4 25 256 4375 127352 6368451 545843326 79514091041 19500493244926 7983738400444391
Rev:InvTransNat0 k=0..n T(n, k) kmissing0 1 2 1 -1 3 -21 307 -8683 452281 -42049747 6832933219 -1911137147075 909373783073643
Rev:InvTransNat1 k=0..n T(n, k) (k + 1)missing1 2 3 1 -1 3 -21 307 -8683 452281 -42049747 6832933219 -1911137147075 909373783073643
Rev:InvTransSqrs k=0..n T(n, k) k^2missing0 1 4 5 -3 7 -43 597 -16629 863031 -80179853 13027297187 -3643600254619 1733724956876411
Rev:InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 1 -1 3 -21 313 -9351 532165 -55517313 10326087079 -3356067646913 1877364384527725
Rev:InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 1 3 15 135 2241 69537 4000461 418414251 77864153883 25308784675731 14157775816168845
Rev:InvDiagRow1T(n + 1, n)A0019240 0 -1 -3 -7 -14 -26 -46 -79 -133 -221 -364 -596 -972 -1581 -2567 -4163 -6746 -10926 -17690 -28635
Rev:InvDiagRow2T(n + 2, n)missing0 0 2 14 67 255 862 2697 8032 23126 65051 179968 491943 1332817 3586881 9603572 25610063 68079112
Rev:InvDiagRow3T(n + 3, n)missing0 0 -8 -117 -1088 -7677 -46687 -257182 -1327170 -6540011 -31178589 -145040806 -662373211
Rev:InvDiagCol1T(n + 1, 1)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvDiagCol2T(n + 2, 2)missing1 -1 2 -8 63 -959 27433 -1432725 133274626 -21658628724 6057893515164 -2882524498268027
Rev:InvDiagCol3T(n + 3, 3)missing1 -3 14 -117 1817 -52270 2733486 -254341160 41335203874 -11561489287787 5501302850334480
Rev:InvPolysee docsmissing1 0 1 0 1 1 0 1 2 1 0 0 4 3 1 0 0 4 9 4 1 0 0 0 18 16 5 1 0 0 0 18 48 25 6 1 0 0 4 -18 96 100 36 7
Rev:InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvPolyRow2 k=0..2 T(2, k) n^kA0002900 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
Rev:InvPolyRow3 k=0..3 T(3, k) n^kA0459910 0 4 18 48 100 180 294 448 648 900 1210 1584 2028 2548 3150 3840 4624 5508 6498 7600 8820 10164
Rev:InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 4 4 0 0 4 -84 2596 -137988 12881032 -2094586672 585907425160 -278795451303228
Rev:InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 9 18 18 -18 162 -2502 71910 -3760074 349854966 -56857833306 15903175034250 -7567206585604506
Rev:InvPolyDiag k=0..n T(n, k) n^kmissing1 1 4 18 96 300 1620 14406 -459200 11965320 5850102600 -3588527033410 2304134908859520
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.