OEIS Similars: A217831
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A217831 | 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A217831 | 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 |
Std | Accsee docs | A378068 | 0 1 2 0 1 1 0 1 2 2 0 1 1 2 2 0 1 2 3 4 4 0 1 1 1 1 2 2 0 1 2 3 4 5 6 6 0 1 1 2 2 3 3 4 4 0 1 2 2 3 |
Std | AccRevsee docs | A378068 | 0 1 2 0 1 1 0 1 2 2 0 1 1 2 2 0 1 2 3 4 4 0 1 1 1 1 2 2 0 1 2 3 4 5 6 6 0 1 1 2 2 3 3 4 4 0 1 2 2 3 |
Std | AntiDiagsee docs | missing | 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 |
Std | Diffx1T(n, k) (k+1) | missing | 0 1 2 0 2 0 0 2 3 0 0 2 0 4 0 0 2 3 4 5 0 0 2 0 0 0 6 0 0 2 3 4 5 6 7 0 0 2 0 4 0 6 0 8 0 0 2 3 0 5 |
Std | RowSum∑ k=0..n T(n, k) | A000010 | 0 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A349136 | 0 1 0 1 0 2 0 3 0 3 0 5 0 6 0 4 0 8 0 9 0 6 0 11 0 10 0 9 0 14 0 15 0 10 0 12 0 18 0 12 0 20 0 21 0 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A055034 | 0 1 1 1 2 2 2 3 4 3 4 5 4 6 6 4 8 8 6 9 8 6 10 11 8 10 12 9 12 14 8 15 16 10 16 12 12 18 18 12 16 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A062570 | 0 0 -1 0 -2 0 -2 0 -4 0 -4 0 -4 0 -6 0 -8 0 -6 0 -8 0 -10 0 -8 0 -12 0 -12 0 -8 0 -16 0 -16 0 -12 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000010 | 0 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A023022 | 0 1 1 1 1 2 1 3 2 3 2 5 2 6 3 4 4 8 3 9 4 6 5 11 4 10 6 9 6 14 4 15 8 10 8 12 6 18 9 12 8 20 6 21 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A092790 | 0 3 2 5 6 14 8 27 20 33 24 65 28 90 48 68 72 152 60 189 88 138 120 275 104 270 168 261 180 434 128 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A092790 | 0 3 2 5 6 14 8 27 20 33 24 65 28 90 48 68 72 152 60 189 88 138 120 275 104 270 168 261 180 434 128 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000012 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColMiddleT(n, n // 2) | A000035 | 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
Std | CentralET(2 n, n) | A209229 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | CentralOT(2 n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColLeftT(n, 0) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A056188 | 0 2 2 6 8 30 12 126 128 342 260 2046 1608 8190 4760 15840 32768 131070 80820 524286 493280 1165542 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 0 0 -2 0 -8 0 -12 0 -128 0 -260 0 -1608 0 -4760 0 -32768 0 -80820 0 -493280 0 -1391720 0 -5769552 0 |
Std | TransNat0∑ k=0..n T(n, k) k | A023896 | 0 1 1 3 4 10 6 21 16 27 20 55 24 78 42 60 64 136 54 171 80 126 110 253 96 250 156 243 168 406 120 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A092790 | 0 3 2 5 6 14 8 27 20 33 24 65 28 90 48 68 72 152 60 189 88 138 120 275 104 270 168 261 180 434 128 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A053818 | 0 1 1 5 10 30 26 91 84 159 140 385 196 650 406 620 680 1496 654 2109 1080 1806 1650 3795 1544 4150 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A367544 | 0 3 2 6 10 30 34 126 170 438 650 2046 2210 8190 10794 27030 43690 131070 141474 524286 666250 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A367545 | 0 -1 -2 2 -10 10 -34 42 -170 114 -650 682 -2210 2730 -10794 6290 -43690 43690 -141474 174762 |
Std | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagRow2T(n + 2, n) | A000035 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
Std | DiagRow3T(n + 3, n) | A011655 | 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000035 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
Std | DiagCol3T(n + 3, 3) | A011655 | 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 |
Std | Polysee docs | missing | 0 1 0 0 2 0 0 1 3 0 0 2 2 4 0 0 2 6 3 5 0 0 4 10 12 4 6 0 0 2 30 30 20 5 7 0 0 6 34 120 68 30 6 8 0 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A367544 | 0 3 2 6 10 30 34 126 170 438 650 2046 2210 8190 10794 27030 43690 131070 141474 524286 666250 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 0 4 3 12 30 120 246 1092 2460 9084 21900 88572 179580 797160 1791426 6563280 16142520 64570080 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A367546 | 0 2 2 12 68 780 7782 137256 2130440 47895390 1010001010 28531167060 743044451340 25239592216020 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A217831 | 0 1 -1 0 -1 0 0 -1 1 0 0 -1 0 -1 0 0 -1 1 -1 1 0 0 -1 0 0 0 -1 0 0 -1 1 -1 1 -1 1 0 0 -1 0 -1 0 -1 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A217831 | 0 -1 1 0 -1 0 0 1 -1 0 0 -1 0 -1 0 0 1 -1 1 -1 0 0 -1 0 0 0 -1 0 0 1 -1 1 -1 1 -1 0 0 -1 0 -1 0 -1 |
Alt | Accsee docs | missing | 0 1 0 0 -1 -1 0 -1 0 0 0 -1 -1 -2 -2 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -2 -2 0 -1 0 -1 0 -1 0 0 0 -1 -1 |
Alt | AccRevsee docs | missing | 0 -1 0 0 -1 -1 0 1 0 0 0 -1 -1 -2 -2 0 1 0 1 0 0 0 -1 -1 -1 -1 -2 -2 0 1 0 1 0 1 0 0 0 -1 -1 -2 -2 |
Alt | AntiDiagsee docs | missing | 0 1 0 -1 0 -1 0 -1 0 0 -1 1 0 -1 0 0 0 -1 1 -1 0 -1 0 -1 0 0 -1 1 0 1 0 -1 0 -1 0 0 0 -1 1 -1 1 -1 |
Alt | Diffx1T(n, k) (k+1) | missing | 0 1 -2 0 -2 0 0 -2 3 0 0 -2 0 -4 0 0 -2 3 -4 5 0 0 -2 0 0 0 -6 0 0 -2 3 -4 5 -6 7 0 0 -2 0 -4 0 -6 |
Alt | RowSum∑ k=0..n T(n, k) | A062570 | 0 0 -1 0 -2 0 -2 0 -4 0 -4 0 -4 0 -6 0 -8 0 -6 0 -8 0 -10 0 -8 0 -12 0 -12 0 -8 0 -16 0 -16 0 -12 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A349136 | 0 1 0 1 0 2 0 3 0 3 0 5 0 6 0 4 0 8 0 9 0 6 0 11 0 10 0 9 0 14 0 15 0 10 0 12 0 18 0 12 0 20 0 21 0 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A055034 | 0 -1 -1 -1 -2 -2 -2 -3 -4 -3 -4 -5 -4 -6 -6 -4 -8 -8 -6 -9 -8 -6 -10 -11 -8 -10 -12 -9 -12 -14 -8 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000010 | 0 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000010 | 0 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 0 1 -1 -1 -1 0 -1 -1 -2 1 -2 -1 -2 0 -3 0 -4 0 -3 -1 -4 2 -5 -1 -4 0 -6 -1 -6 0 -4 -1 -8 2 -8 0 -6 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 0 1 -2 -1 -6 -2 -8 -3 -20 -1 -24 -5 -28 -6 -48 4 -72 -8 -60 -9 -88 6 -120 -11 -104 -2 -168 -1 -180 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 0 -1 -2 1 -6 2 -8 3 -20 1 -24 5 -28 6 -48 -4 -72 8 -60 9 -88 -6 -120 11 -104 2 -168 1 -180 14 -128 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000012 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | ColMiddleT(n, n // 2) | A000035 | 0 1 -1 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 |
Alt | CentralET(2 n, n) | A209229 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColLeftT(n, 0) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 0 0 -2 0 -8 0 -12 0 -128 0 -260 0 -1608 0 -4760 0 -32768 0 -80820 0 -493280 0 -1391720 0 -5769552 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A056188 | 0 -2 2 -6 8 -30 12 -126 128 -342 260 -2046 1608 -8190 4760 -15840 32768 -131070 80820 -524286 |
Alt | TransNat0∑ k=0..n T(n, k) k | A325887 | 0 -1 -1 1 -4 2 -6 3 -16 1 -20 5 -24 6 -42 -4 -64 8 -54 9 -80 -6 -110 11 -96 2 -156 1 -168 14 -120 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 0 -1 -2 1 -6 2 -8 3 -20 1 -24 5 -28 6 -48 -4 -72 8 -60 9 -88 -6 -120 11 -104 2 -168 1 -180 14 -128 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 -1 3 -10 10 -26 21 -84 9 -140 55 -196 78 -406 -60 -680 136 -654 171 -1080 -126 -1650 253 -1544 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A367545 | 0 1 -2 -2 -10 -10 -34 -42 -170 -114 -650 -682 -2210 -2730 -10794 -6290 -43690 -43690 -141474 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A367544 | 0 -3 2 -6 10 -30 34 -126 170 -438 650 -2046 2210 -8190 10794 -27030 43690 -131070 141474 -524286 |
Alt | DiagRow2T(n + 2, n) | A000035 | 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000035 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
Alt | DiagCol3T(n + 3, 3) | A011655 | 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 |
Alt | Polysee docs | missing | 0 1 0 0 0 0 0 -1 -1 0 0 0 -2 -2 0 0 -2 2 -3 -3 0 0 0 -10 6 -4 -4 0 0 -2 10 -30 12 -5 -5 0 0 0 -34 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A367545 | 0 -1 -2 2 -10 10 -34 42 -170 114 -650 682 -2210 2730 -10794 6290 -43690 43690 -141474 174762 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 0 -2 -3 6 -30 60 -246 546 -2460 4218 -21900 44286 -179580 398580 -1791426 3015960 -16142520 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 0 0 -2 6 -68 520 -7782 102942 -2130440 38211336 -1010001010 23775972550 -743044451340 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.