EUCLID[0] 0
[1] 1, 1
[2] 0, 1, 0
[3] 0, 1, 1, 0
[4] 0, 1, 0, 1, 0
[5] 0, 1, 1, 1, 1, 0

      OEIS Similars: A217831

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA2178310 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1
StdRevT(n, n - k), 0 ≤ k ≤ nA2178310 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1
StdAccsee docsA3780680 1 2 0 1 1 0 1 2 2 0 1 1 2 2 0 1 2 3 4 4 0 1 1 1 1 2 2 0 1 2 3 4 5 6 6 0 1 1 2 2 3 3 4 4 0 1 2 2 3
StdAccRevsee docsA3780680 1 2 0 1 1 0 1 2 2 0 1 1 2 2 0 1 2 3 4 4 0 1 1 1 1 2 2 0 1 2 3 4 5 6 6 0 1 1 2 2 3 3 4 4 0 1 2 2 3
StdAntiDiagsee docsmissing0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0
StdDiffx1T(n, k) (k+1)missing0 1 2 0 2 0 0 2 3 0 0 2 0 4 0 0 2 3 4 5 0 0 2 0 0 0 6 0 0 2 3 4 5 6 7 0 0 2 0 4 0 6 0 8 0 0 2 3 0 5
StdRowSum k=0..n T(n, k)A0000100 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
StdEvenSum k=0..n T(n, k) even(k)A3491360 1 0 1 0 2 0 3 0 3 0 5 0 6 0 4 0 8 0 9 0 6 0 11 0 10 0 9 0 14 0 15 0 10 0 12 0 18 0 12 0 20 0 21 0
StdOddSum k=0..n T(n, k) odd(k)A0550340 1 1 1 2 2 2 3 4 3 4 5 4 6 6 4 8 8 6 9 8 6 10 11 8 10 12 9 12 14 8 15 16 10 16 12 12 18 18 12 16
StdAltSum k=0..n T(n, k) (-1)^kA0625700 0 -1 0 -2 0 -2 0 -4 0 -4 0 -4 0 -6 0 -8 0 -6 0 -8 0 -10 0 -8 0 -12 0 -12 0 -8 0 -16 0 -16 0 -12 0
StdAbsSum k=0..n | T(n, k) |A0000100 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
StdDiagSum k=0..n // 2 T(n - k, k)A0230220 1 1 1 1 2 1 3 2 3 2 5 2 6 3 4 4 8 3 9 4 6 5 11 4 10 6 9 6 14 4 15 8 10 8 12 6 18 9 12 8 20 6 21
StdAccSum k=0..n j=0..k T(n, j)A0927900 3 2 5 6 14 8 27 20 33 24 65 28 90 48 68 72 152 60 189 88 138 120 275 104 270 168 261 180 434 128
StdAccRevSum k=0..n j=0..k T(n, n - j)A0927900 3 2 5 6 14 8 27 20 33 24 65 28 90 48 68 72 152 60 189 88 138 120 275 104 270 168 261 180 434 128
StdRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColMiddleT(n, n // 2)A0000350 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
StdCentralET(2 n, n)A2092290 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdCentralOT(2 n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColLeftT(n, 0)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdBinConv k=0..n C(n, k) T(n, k)A0561880 2 2 6 8 30 12 126 128 342 260 2046 1608 8190 4760 15840 32768 131070 80820 524286 493280 1165542
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing0 0 -2 0 -8 0 -12 0 -128 0 -260 0 -1608 0 -4760 0 -32768 0 -80820 0 -493280 0 -1391720 0 -5769552 0
StdTransNat0 k=0..n T(n, k) kA0238960 1 1 3 4 10 6 21 16 27 20 55 24 78 42 60 64 136 54 171 80 126 110 253 96 250 156 243 168 406 120
StdTransNat1 k=0..n T(n, k) (k + 1)A0927900 3 2 5 6 14 8 27 20 33 24 65 28 90 48 68 72 152 60 189 88 138 120 275 104 270 168 261 180 434 128
StdTransSqrs k=0..n T(n, k) k^2A0538180 1 1 5 10 30 26 91 84 159 140 385 196 650 406 620 680 1496 654 2109 1080 1806 1650 3795 1544 4150
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA3675440 3 2 6 10 30 34 126 170 438 650 2046 2210 8190 10794 27030 43690 131070 141474 524286 666250
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3675450 -1 -2 2 -10 10 -34 42 -170 114 -650 682 -2210 2730 -10794 6290 -43690 43690 -141474 174762
StdDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagRow2T(n + 2, n)A0000350 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
StdDiagRow3T(n + 3, n)A0116550 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0000350 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
StdDiagCol3T(n + 3, 3)A0116550 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
StdPolysee docsmissing0 1 0 0 2 0 0 1 3 0 0 2 2 4 0 0 2 6 3 5 0 0 4 10 12 4 6 0 0 2 30 30 20 5 7 0 0 6 34 120 68 30 6 8 0
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow3 k=0..3 T(3, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdPolyCol2 k=0..n T(n, k) 2^kA3675440 3 2 6 10 30 34 126 170 438 650 2046 2210 8190 10794 27030 43690 131070 141474 524286 666250
StdPolyCol3 k=0..n T(n, k) 3^kmissing0 4 3 12 30 120 246 1092 2460 9084 21900 88572 179580 797160 1791426 6563280 16142520 64570080
StdPolyDiag k=0..n T(n, k) n^kA3675460 2 2 12 68 780 7782 137256 2130440 47895390 1010001010 28531167060 743044451340 25239592216020
AltTriangleT(n, k), 0 ≤ k ≤ nA2178310 1 -1 0 -1 0 0 -1 1 0 0 -1 0 -1 0 0 -1 1 -1 1 0 0 -1 0 0 0 -1 0 0 -1 1 -1 1 -1 1 0 0 -1 0 -1 0 -1
AltRevT(n, n - k), 0 ≤ k ≤ nA2178310 -1 1 0 -1 0 0 1 -1 0 0 -1 0 -1 0 0 1 -1 1 -1 0 0 -1 0 0 0 -1 0 0 1 -1 1 -1 1 -1 0 0 -1 0 -1 0 -1
AltAccsee docsmissing0 1 0 0 -1 -1 0 -1 0 0 0 -1 -1 -2 -2 0 -1 0 -1 0 0 0 -1 -1 -1 -1 -2 -2 0 -1 0 -1 0 -1 0 0 0 -1 -1
AltAccRevsee docsmissing0 -1 0 0 -1 -1 0 1 0 0 0 -1 -1 -2 -2 0 1 0 1 0 0 0 -1 -1 -1 -1 -2 -2 0 1 0 1 0 1 0 0 0 -1 -1 -2 -2
AltAntiDiagsee docsmissing0 1 0 -1 0 -1 0 -1 0 0 -1 1 0 -1 0 0 0 -1 1 -1 0 -1 0 -1 0 0 -1 1 0 1 0 -1 0 -1 0 0 0 -1 1 -1 1 -1
AltDiffx1T(n, k) (k+1)missing0 1 -2 0 -2 0 0 -2 3 0 0 -2 0 -4 0 0 -2 3 -4 5 0 0 -2 0 0 0 -6 0 0 -2 3 -4 5 -6 7 0 0 -2 0 -4 0 -6
AltRowSum k=0..n T(n, k)A0625700 0 -1 0 -2 0 -2 0 -4 0 -4 0 -4 0 -6 0 -8 0 -6 0 -8 0 -10 0 -8 0 -12 0 -12 0 -8 0 -16 0 -16 0 -12 0
AltEvenSum k=0..n T(n, k) even(k)A3491360 1 0 1 0 2 0 3 0 3 0 5 0 6 0 4 0 8 0 9 0 6 0 11 0 10 0 9 0 14 0 15 0 10 0 12 0 18 0 12 0 20 0 21 0
AltOddSum k=0..n T(n, k) odd(k)A0550340 -1 -1 -1 -2 -2 -2 -3 -4 -3 -4 -5 -4 -6 -6 -4 -8 -8 -6 -9 -8 -6 -10 -11 -8 -10 -12 -9 -12 -14 -8
AltAltSum k=0..n T(n, k) (-1)^kA0000100 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
AltAbsSum k=0..n | T(n, k) |A0000100 2 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12 36 18
AltDiagSum k=0..n // 2 T(n - k, k)missing0 1 -1 -1 -1 0 -1 -1 -2 1 -2 -1 -2 0 -3 0 -4 0 -3 -1 -4 2 -5 -1 -4 0 -6 -1 -6 0 -4 -1 -8 2 -8 0 -6
AltAccSum k=0..n j=0..k T(n, j)missing0 1 -2 -1 -6 -2 -8 -3 -20 -1 -24 -5 -28 -6 -48 4 -72 -8 -60 -9 -88 6 -120 -11 -104 -2 -168 -1 -180
AltAccRevSum k=0..n j=0..k T(n, n - j)missing0 -1 -2 1 -6 2 -8 3 -20 1 -24 5 -28 6 -48 -4 -72 8 -60 9 -88 -6 -120 11 -104 2 -168 1 -180 14 -128
AltRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColMiddleT(n, n // 2)A0000350 1 -1 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1
AltCentralET(2 n, n)A2092290 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColLeftT(n, 0)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing0 0 -2 0 -8 0 -12 0 -128 0 -260 0 -1608 0 -4760 0 -32768 0 -80820 0 -493280 0 -1391720 0 -5769552 0
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0561880 -2 2 -6 8 -30 12 -126 128 -342 260 -2046 1608 -8190 4760 -15840 32768 -131070 80820 -524286
AltTransNat0 k=0..n T(n, k) kA3258870 -1 -1 1 -4 2 -6 3 -16 1 -20 5 -24 6 -42 -4 -64 8 -54 9 -80 -6 -110 11 -96 2 -156 1 -168 14 -120
AltTransNat1 k=0..n T(n, k) (k + 1)missing0 -1 -2 1 -6 2 -8 3 -20 1 -24 5 -28 6 -48 -4 -72 8 -60 9 -88 -6 -120 11 -104 2 -168 1 -180 14 -128
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 -1 3 -10 10 -26 21 -84 9 -140 55 -196 78 -406 -60 -680 136 -654 171 -1080 -126 -1650 253 -1544
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3675450 1 -2 -2 -10 -10 -34 -42 -170 -114 -650 -682 -2210 -2730 -10794 -6290 -43690 -43690 -141474
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3675440 -3 2 -6 10 -30 34 -126 170 -438 650 -2046 2210 -8190 10794 -27030 43690 -131070 141474 -524286
AltDiagRow2T(n + 2, n)A0000350 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0000350 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
AltDiagCol3T(n + 3, 3)A0116550 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
AltPolysee docsmissing0 1 0 0 0 0 0 -1 -1 0 0 0 -2 -2 0 0 -2 2 -3 -3 0 0 0 -10 6 -4 -4 0 0 -2 10 -30 12 -5 -5 0 0 0 -34
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow3 k=0..3 T(3, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
AltPolyCol2 k=0..n T(n, k) 2^kA3675450 -1 -2 2 -10 10 -34 42 -170 114 -650 682 -2210 2730 -10794 6290 -43690 43690 -141474 174762
AltPolyCol3 k=0..n T(n, k) 3^kmissing0 -2 -3 6 -30 60 -246 546 -2460 4218 -21900 44286 -179580 398580 -1791426 3015960 -16142520
AltPolyDiag k=0..n T(n, k) n^kmissing0 0 -2 6 -68 520 -7782 102942 -2130440 38211336 -1010001010 23775972550 -743044451340
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.