OEIS Similars: A269940, A111999, A259456
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A269940 | 1 0 1 0 2 3 0 6 20 15 0 24 130 210 105 0 120 924 2380 2520 945 0 720 7308 26432 44100 34650 10395 0 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 3 2 0 15 20 6 0 105 210 130 24 0 945 2520 2380 924 120 0 10395 34650 44100 26432 7308 720 0 |
Std | Accsee docs | missing | 1 0 1 0 2 5 0 6 26 41 0 24 154 364 469 0 120 1044 3424 5944 6889 0 720 8028 34460 78560 113210 |
Std | AccRevsee docs | missing | 1 1 1 3 5 5 15 35 41 41 105 315 445 469 469 945 3465 5845 6769 6889 6889 10395 45045 89145 115577 |
Std | AntiDiagsee docs | A106828 | 1 0 0 1 0 2 0 6 3 0 24 20 0 120 130 15 0 720 924 210 0 5040 7308 2380 105 0 40320 64224 26432 2520 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 4 9 0 12 60 60 0 48 390 840 525 0 240 2772 9520 12600 5670 0 1440 21924 105728 220500 |
Std | RowSum∑ k=0..n T(n, k) | A032188 | 1 1 5 41 469 6889 123605 2620169 64074901 1775623081 54989743445 1882140936521 70552399533589 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 3 20 235 3444 61803 1310084 32037451 887811540 27494871723 941070468260 35276199766795 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 2 21 234 3445 61802 1310085 32037450 887811541 27494871722 941070468261 35276199766794 |
Std | AbsSum∑ k=0..n | T(n, k) | | A032188 | 1 1 5 41 469 6889 123605 2620169 64074901 1775623081 54989743445 1882140936521 70552399533589 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 7 73 1011 17421 358583 8575169 233499227 7129778357 241209015807 8954112241449 361814361712675 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 13 132 1803 30802 630257 15006352 407249783 12402075534 418667905533 15513719933324 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 6 60 10920 1413720 39840292800 6652505239380000 2048503569859181635200 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 3 20 210 2520 44100 866250 18858840 520059540 14980405440 486591585480 17856935296200 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 2 6 130 924 26432 303660 11098780 177331440 7934927000 162831789120 8637235647040 |
Std | CentralET(2 n, n) | missing | 1 2 130 26432 11098780 7934927000 8637235647040 13306928148113600 27563542664861323120 |
Std | CentralOT(2 n + 1, n) | missing | 0 6 924 303660 177331440 162831789120 216752221445760 395063504843607600 945287743578415036800 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 7 93 1821 47185 1522375 58808449 2646575953 135989069049 7855656271695 503968974045405 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -1 -27 -51 3505 40655 -828919 -29640527 145577529 27107045415 302955618405 -29149221516195 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 8 91 1334 23913 506652 12386183 343174882 10626452453 363678162088 13631578996803 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 13 132 1803 30802 630257 15006352 407249783 12402075534 418667905533 15513719933324 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 14 221 4114 89181 2213910 62017301 1936315234 66696441109 2512886126486 102811622531229 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 7 79 1237 24817 607519 17560063 585330109 22104345409 932722154743 43492678445551 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A001662 | 1 1 -1 -1 13 -47 -73 2447 -16811 -15551 1726511 -18994849 10979677 2983409137 -48421103257 |
Std | DiagRow1T(n + 1, n) | A000906 | 0 2 20 210 2520 34650 540540 9459450 183783600 3928374450 91662070500 2319050383650 63246828645000 |
Std | DiagRow2T(n + 2, n) | A000907 | 0 6 130 2380 44100 866250 18288270 416215800 10199989800 268438920750 7562120816250 227266937597700 |
Std | DiagRow3T(n + 3, n) | A001784 | 0 24 924 26432 705320 18858840 520059540 14980405440 453247114320 14433720701400 483908513388300 |
Std | DiagCol1T(n + 1, 1) | A000142 | 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000 |
Std | DiagCol2T(n + 2, 2) | A000276 | 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 2944310342400 |
Std | DiagCol3T(n + 3, 3) | A000483 | 15 210 2380 26432 303660 3678840 47324376 647536032 9418945536 145410580224 2377609752960 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 5 2 1 0 41 16 3 1 0 469 212 33 4 1 0 6889 3928 603 56 5 1 0 123605 93536 15417 1304 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A045944 | 0 5 16 33 56 85 120 161 208 261 320 385 456 533 616 705 800 901 1008 1121 1240 1365 1496 1633 1776 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 41 212 603 1304 2405 3996 6167 9008 12609 17060 22451 28872 36413 45164 55215 66656 79577 94068 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 16 212 3928 93536 2721808 93593216 3713245504 166956801728 8389729444864 465960841779968 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 33 603 15417 506691 20351601 966015531 52906036329 3283794968787 227795984943777 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 16 603 42496 4849325 817557840 191243348471 59305251856384 23552891957893329 |
Alt | Accsee docs | missing | 1 0 -1 0 -2 1 0 -6 14 -1 0 -24 106 -104 1 0 -120 804 -1576 944 -1 0 -720 6588 -19844 24256 -10394 1 |
Alt | AccRevsee docs | missing | 1 -1 -1 3 1 1 -15 5 -1 -1 105 -105 25 1 1 -945 1575 -805 119 -1 -1 10395 -24255 19845 -6587 721 1 1 |
Alt | AntiDiagsee docs | A106828 | 1 0 0 -1 0 -2 0 -6 3 0 -24 20 0 -120 130 -15 0 -720 924 -210 0 -5040 7308 -2380 105 0 -40320 64224 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -4 9 0 -12 60 -60 0 -48 390 -840 525 0 -240 2772 -9520 12600 -5670 0 -1440 21924 -105728 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 3 20 235 3444 61803 1310084 32037451 887811540 27494871723 941070468260 35276199766795 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -2 -21 -234 -3445 -61802 -1310085 -32037450 -887811541 -27494871722 -941070468261 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A032188 | 1 1 5 41 469 6889 123605 2620169 64074901 1775623081 54989743445 1882140936521 70552399533589 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A032188 | 1 1 5 41 469 6889 123605 2620169 64074901 1775623081 54989743445 1882140936521 70552399533589 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A070313 | 1 -1 -1 7 -21 51 -113 239 -493 1003 -2025 4071 -8165 16355 -32737 65503 -131037 262107 -524249 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000325 | 1 -2 5 -12 27 -58 121 -248 503 -1014 2037 -4084 8179 -16370 32753 -65520 131055 -262126 524269 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 6 60 10920 1413720 39840292800 6652505239380000 2048503569859181635200 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 3 20 210 2520 44100 866250 18858840 520059540 14980405440 486591585480 17856935296200 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -2 -6 130 924 -26432 -303660 11098780 177331440 -7934927000 -162831789120 8637235647040 |
Alt | CentralET(2 n, n) | missing | 1 -2 130 -26432 11098780 -7934927000 8637235647040 -13306928148113600 27563542664861323120 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -6 924 -303660 177331440 -162831789120 216752221445760 -395063504843607600 945287743578415036800 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A001147 | 1 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 -1 27 -51 -3505 40655 828919 -29640527 -145577529 27107045415 -302955618405 -29149221516195 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 7 -93 1821 -47185 1522375 -58808449 2646575953 -135989069049 7855656271695 -503968974045405 |
Alt | TransNat0∑ k=0..n T(n, k) k | A000295 | 0 -1 4 -11 26 -57 120 -247 502 -1013 2036 -4083 8178 -16369 32752 -65519 131054 -262125 524268 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A000325 | 1 -2 5 -12 27 -58 121 -248 503 -1014 2037 -4084 8179 -16370 32753 -65520 131055 -262126 524269 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 10 -61 286 -1149 4194 -14389 47374 -151669 476290 -1475709 4529214 -13808461 41900098 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A001662 | 1 -1 -1 1 13 47 -73 -2447 -16811 15551 1726511 18994849 10979677 -2983409137 -48421103257 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 7 -79 1237 -24817 607519 -17560063 585330109 -22104345409 932722154743 -43492678445551 |
Alt | DiagRow1T(n + 1, n) | A000906 | 0 -2 20 -210 2520 -34650 540540 -9459450 183783600 -3928374450 91662070500 -2319050383650 |
Alt | DiagRow2T(n + 2, n) | A000907 | 0 -6 130 -2380 44100 -866250 18288270 -416215800 10199989800 -268438920750 7562120816250 |
Alt | DiagRow3T(n + 3, n) | A001784 | 0 -24 924 -26432 705320 -18858840 520059540 -14980405440 453247114320 -14433720701400 |
Alt | DiagCol1T(n + 1, 1) | A000142 | -1 -2 -6 -24 -120 -720 -5040 -40320 -362880 -3628800 -39916800 -479001600 -6227020800 -87178291200 |
Alt | DiagCol2T(n + 2, 2) | A000276 | 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 2944310342400 |
Alt | DiagCol3T(n + 3, 3) | A000483 | -15 -210 -2380 -26432 -303660 -3678840 -47324376 -647536032 -9418945536 -145410580224 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 1 -2 1 0 -1 8 -3 1 0 1 -52 21 -4 1 0 -1 472 -243 40 -5 1 0 1 -5504 3933 -664 65 -6 1 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000567 | 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 736 833 936 1045 1160 1281 1408 1541 1680 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -1 -52 -243 -664 -1405 -2556 -4207 -6448 -9369 -13060 -17611 -23112 -29653 -37324 -46215 -56416 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A006351 | 1 -2 8 -52 472 -5504 78416 -1320064 25637824 -564275648 13879795712 -377332365568 11234698041088 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | A058562 | 1 -3 21 -243 3933 -81819 2080053 -62490339 2166106509 -85092601707 3735939709989 -181287330220467 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 8 -243 15424 -1653125 267253776 -60662126959 18389742168064 -7175239308404649 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 3 2 0 15 20 6 0 105 210 130 24 0 945 2520 2380 924 120 0 10395 34650 44100 26432 7308 720 0 |
Rev | Accsee docs | missing | 1 1 1 3 5 5 15 35 41 41 105 315 445 469 469 945 3465 5845 6769 6889 6889 10395 45045 89145 115577 |
Rev | AccRevsee docs | missing | 1 0 1 0 2 5 0 6 26 41 0 24 154 364 469 0 120 1044 3424 5944 6889 0 720 8028 34460 78560 113210 |
Rev | AntiDiagsee docs | missing | 1 1 3 0 15 2 105 20 0 945 210 6 10395 2520 130 0 135135 34650 2380 24 2027025 540540 44100 924 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 3 4 0 15 40 18 0 105 420 390 96 0 945 5040 7140 3696 600 0 10395 69300 132300 105728 36540 |
Rev | RowSum∑ k=0..n T(n, k) | A032188 | 1 1 5 41 469 6889 123605 2620169 64074901 1775623081 54989743445 1882140936521 70552399533589 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 3 21 235 3445 61803 1310085 32037451 887811541 27494871723 941070468261 35276199766795 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 2 20 234 3444 61802 1310084 32037450 887811540 27494871722 941070468260 35276199766794 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A032188 | 1 1 5 41 469 6889 123605 2620169 64074901 1775623081 54989743445 1882140936521 70552399533589 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 3 17 125 1161 13045 172189 2612589 44811677 857513573 18113064045 418627426069 10508716423405 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 13 132 1803 30802 630257 15006352 407249783 12402075534 418667905533 15513719933324 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 7 73 1011 17421 358583 8575169 233499227 7129778357 241209015807 8954112241449 361814361712675 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 6 60 10920 1413720 39840292800 6652505239380000 2048503569859181635200 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 3 20 210 2520 44100 866250 18858840 520059540 14980405440 486591585480 17856935296200 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 2 20 130 2380 26432 705320 11098780 389449060 7934927000 345240896000 8637235647040 |
Rev | CentralET(2 n, n) | missing | 1 2 130 26432 11098780 7934927000 8637235647040 13306928148113600 27563542664861323120 |
Rev | CentralOT(2 n + 1, n) | missing | 1 20 2380 705320 389449060 345240896000 448594185959920 803351393628623840 1896599794387175878000 |
Rev | ColLeftT(n, 0) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 7 93 1821 47185 1522375 58808449 2646575953 135989069049 7855656271695 503968974045405 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 27 -51 -3505 40655 828919 -29640527 -145577529 27107045415 -302955618405 -29149221516195 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 2 32 542 10532 234978 5955000 169424326 5354155276 186219272362 7071971304928 291261962179086 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 7 73 1011 17421 358583 8575169 233499227 7129778357 241209015807 8954112241449 361814361712675 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 2 44 946 22276 583866 16999020 546310786 19245766516 738297229226 30655937920604 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 16 212 3928 93536 2721808 93593216 3713245504 166956801728 8389729444864 465960841779968 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A006351 | 1 -2 8 -52 472 -5504 78416 -1320064 25637824 -564275648 13879795712 -377332365568 11234698041088 |
Rev | DiagRow1T(n + 1, n) | A000142 | 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000 |
Rev | DiagRow2T(n + 2, n) | A000276 | 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 2944310342400 |
Rev | DiagRow3T(n + 3, n) | A000483 | 15 210 2380 26432 303660 3678840 47324376 647536032 9418945536 145410580224 2377609752960 |
Rev | DiagCol1T(n + 1, 1) | A000906 | 0 2 20 210 2520 34650 540540 9459450 183783600 3928374450 91662070500 2319050383650 63246828645000 |
Rev | DiagCol2T(n + 2, 2) | A000907 | 0 6 130 2380 44100 866250 18288270 416215800 10199989800 268438920750 7562120816250 227266937597700 |
Rev | DiagCol3T(n + 3, 3) | A001784 | 0 24 924 26432 705320 18858840 520059540 14980405440 453247114320 14433720701400 483908513388300 |
Rev | Polysee docs | missing | 1 1 1 3 1 1 15 5 1 1 105 41 7 1 1 945 469 79 9 1 1 10395 6889 1237 129 11 1 1 135135 123605 24817 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A005408 | 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A239325 | 15 41 79 129 191 265 351 449 559 681 815 961 1119 1289 1471 1665 1871 2089 2319 2561 2815 3081 3359 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 7 79 1237 24817 607519 17560063 585330109 22104345409 932722154743 43492678445551 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 9 129 2553 64593 1991817 72473697 3039768729 144405631089 7663786510761 449399632734081 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 7 129 4561 263545 22585095 2689741313 424884156769 85956226636041 21670469260893575 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.